11 Matching Results

Search Results

Advanced search parameters have been applied.

Effects of d-electrons in pseudopotential screened-exchange density functional calculations

Description: We report a theoretical study on the role of shallow d states in the screened-exchange local density approximation (sX-LDA) band structure of binary semiconductor systems.We found that inaccurate pseudo-wavefunctions can lead to 1) an overestimation of the screened-exchange interaction betweenthe localized d states and the delocalized higher energy s and p states and 2) an underestimation of the screened-exchange interaction between the d states. The resulting sX-LDA band structures have substantially smaller band gaps compared with experiments. We correct the pseudo-wavefunctions of d states by including the semicore s and p states of the same shell in the valence states. The correction of pseudo-wavefunctions yields band gaps and d state binding energies in good agreement with experiments and the full potential linearized augmented plane wave sX-LDA calculations. Compared with the quasi-particle GW method, our sX-LDA results shows not only similar quality on the band gaps but also much better d state binding energies. Combined with its capability of ground state structure calculation, the sX-LDA is expected to be a valuable theoretical tool for the II-VI and III-V (especially the III-N) bulk semiconductors and nanostructure studies.
Date: September 12, 2007
Creator: Lee, Byounghak; Canning, Andrew & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Mechanical and electronic-structure properties of compressed CdSetetrapod nanocrystals

Description: The coupling of mechanical and optical properties insemiconductor nanostructures can potentially lead to new types ofdevices. This work describes our theoretical examination of themechanical properties of CdSe tetrapods under directional forces, such asmay be induced by AFM tips. In addition to studying the general behaviorof the mechanical properties under modifications of geometry,nanocrystal-substrate interaction, and dimensional scaling, ourcalculations indicate that mechanical deformations do not lead to largechanges in the band-edge state eigenenergies, and have only a weak effecton the oscillator strengths of the lowest energy transitions.
Date: January 18, 2007
Creator: Schrier, Joshua; Lee, Byounghak & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Nonlocal exchange correlation in screened-exchange densityfunctional methods

Description: We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.
Date: April 22, 2007
Creator: Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D. & Louie,Steven G.
Partner: UNT Libraries Government Documents Department

Electronic structure of Calcium hexaborides

Description: We present a theoretical study of crystal and electronic structures of CaB6 within a screened-exchange local density approximation (sX-LDA). Our ab initio total energy calculations show that CaB6 is a semiconductor with a gap of >1.2 eV, in agreement with recent experimental observations. We show a very sensitive band gap dependence on the crystal internal parameter, which might partially explain the scatter of previous theoretical results. Our calculation demonstrates that it is essential to study this system simultaneously for both crystal structures and electronic properties, and that the sX-LDA provides an ideal method for this problem.
Date: June 15, 2005
Creator: Lee, Byounghak & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Band gap bowing and electron localization of (GaxIn1-x)N

Description: The band gap bowing and the electron localization ofGaxIn1-xN are calculated using both the local density approximation (LDA)and screened-exchange local density functional (sX-LDA) methods. Thecalculated sX-LDA band gaps are in good agreement with the experimentallyobserved values, with errors of -0.26 and 0.09 eV for bulk GaN and InN,respectively. The LDA band gap errors are 1.33 and 0.81 eV for GaN andInN, in order. In contrast to the gap itself, the band gap bowingparameter is found to be very similar in sX-LDA and LDA. We identify thelocalization of hole states in GaxIn1-xN alloys along In-N-In chains. Thepredicted localizationis stronger in sX-LDA.
Date: May 9, 2006
Creator: Lee, Byounghak & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Electronic Structure of zinc-blende AlxGa1-xN; Screened-ExchangeStudy

Description: We present a first principle investigation of the electronicstructure and the band gap bowing parameter of zinc-blende \AlGaN usingboth local density approximation and screened-exchange density functionalmethod. The calculated sX-LDA band gaps for GaN and AlN are 95 percentand 90 percent of the experimentally observed values, respectively, whileLDA under estimates the gaps to 62 percent and 70 percent. In contrast tothe gap itself, the band gap bowing parameter is found to be very similarin sX-LDA and LDA. Because of the difference in the conduction bandstructure, the direct to indirect band gap crossover is predicted tooccur at different Al concentration.
Date: January 3, 2006
Creator: Lee, Byounghak & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Effects of d-electrons in pseudopotential screened-exchange density functional calculations

Description: We report a theoretical study on the role of shallow d states in the screened-exchange local density approximation (sX-LDA) band structure of binary semiconductor systems. We found that the inaccurate pseudo-wavefunctions can lead to (1) an overestimation of the screened-exchange interaction between the localized d states and the delocalized higher energy s and p states and (2) an underestimation of the screened-exchange interaction between the d states. The resulting sX-LDA band structures have substantially smaller band gaps compared with experiments. We correct the pseudo-wavefunctions of d states by including the semicore s and p states of the same shell in the valence states. The correction of pseudo-wavefunctions yields band gaps and the d state binding energy with good agreements with experiments and the full potential linearized augmented planewave (FLAPW) calculations. Compared with the quasi-particle GW method, our sX-LDA results shows not only similar quality on the band gaps but also much better d state binding energy. Combined with its capability of ground state structure calculation, the sX-LDA is expected to be a valuable theoretical tool for the II-VI and III-V (especially the III-N) bulk semiconductors and nanostructure studies.
Date: August 11, 2008
Creator: Wang, Lin-Wang; Lee, Byounghak; Canning, Andrew & Wang, Lin-Wang
Partner: UNT Libraries Government Documents Department

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

Description: We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.
Date: July 1, 2008
Creator: Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich et al.
Partner: UNT Libraries Government Documents Department

Linear scaling 3D fragment method for large-scale electronic structure calculations

Description: We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39% of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N{sup 3}) methods, and the potential for petascale computation using the LS3DF method.
Date: July 11, 2008
Creator: Wang, Lin-Wang; Wang, Lin-Wang; Lee, Byounghak; Shan, HongZhang; Zhao, Zhengji; Meza, Juan et al.
Partner: UNT Libraries Government Documents Department

Mechanical and Electrical Properties of CdTe Tetrapods Studied byAtomic Force Microscopy

Description: The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with the ends of three arms. The length of these arms was found to be 130 {+-} 10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the AFM tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shorted the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold indicated semiconducting behavior with a current gap of {approx}2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomic calculation of the deformation suggests that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. The reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.
Date: August 30, 2007
Creator: Fang, Liang; Park, Jeong Young; Cui, Yi; Alivisatos, Paul; Shcrier, Joshua; Lee, Byounghak et al.
Partner: UNT Libraries Government Documents Department

The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

Description: The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.
Date: June 26, 2009
Creator: Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David et al.
Partner: UNT Libraries Government Documents Department