13 Matching Results

Search Results

Advanced search parameters have been applied.

PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

Description: This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.
Date: June 30, 2002
Creator: Ledebuhr, A.G. & Ng, L.C.
Partner: UNT Libraries Government Documents Department

Analysis of Active Sensor Discrimination Requirements for Various Defense Missile Defense Scenarios Final Report 1999(99-ERD-080)

Description: During FY99, we have explored and analyzed a combined passive/active sensor concept to support the advanced discrimination requirements for various missile defense scenario. The idea is to combine multiple IR spectral channels with an imaging LIDAR (Light Detection and Ranging) behind a common optical system. The imaging LIDAR would itself consist of at least two channels; one at the fundamental laser wavelength (e.g., the 1.064 {micro}m for Nd:YAG) and one channel at the frequency doubled (at 532 nm for Nd:YAG). two-color laser output would, for example, allow the longer wavelength for a direct detection time of flight ranger and an active imaging channel at the shorter wavelength. The LIDAR can function as a high-resolution 2D spatial image either passively or actively with laser illumination. Advances in laser design also offer three color (frequency tripled) systems, high rep-rate operation, better pumping efficiencies that can provide longer distance acquisition, and ranging for enhanced discrimination phenomenology. New detector developments can enhance the performance and operation of both LIDAR channels. A real time data fusion approach that combines multi-spectral IR phenomenology with LIDAR imagery can improve both discrimination and aim-point selection capability.
Date: February 15, 2000
Creator: Ledebuhr, A.G.; Ng, L.C. & Gaughan, R.J.
Partner: UNT Libraries Government Documents Department

Progress toward hydrogen peroxide micropulsion

Description: A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.
Date: July 8, 1999
Creator: Whitehead, J. C.; Dittman, M. D. & Ledebuhr, A. G.
Partner: UNT Libraries Government Documents Department

HiRes camera and LIDAR ranging system for the Clementine mission

Description: Lawrence Livermore National Laboratory developed a space-qualified High Resolution (HiRes) imaging LIDAR (Light Detection And Ranging) system for use on the DoD Clementine mission. The Clementine mission provided more than 1.7 million images of the moon, earth, and stars, including the first ever complete systematic surface mapping of the moon from the ultra-violet to near-infrared spectral regions. This article describes the Clementine HiRes/LIDAR system, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. The LIDAR receiver system consists of a High Resolution (HiRes) imaging channel which incorporates an intensified multi-spectral visible camera combined with a Laser ranging channel which uses an avalanche photo-diode for laser pulse detection and timing. The receiver was bore sighted to a light-weight McDonnell-Douglas diode-pumped ND:YAG laser transmitter that emmitted 1.06 {micro}m wavelength pulses of 200 mJ/pulse and 10 ns pulse-width, The LIDAR receiver uses a common F/9.5 Cassegrain telescope assembly. The optical path of the telescope is split using a color-separating beamsplitter. The imaging channel incorporates a filter wheel assembly which spectrally selects the light which is imaged onto a custom 12 mm gated image intensifier fiber-optically-coupled into a 384 x 276 pixel frame transfer CCD FPA. The image intensifier was spectrally sensitive over the 0.4 to 0.8 {micro}m wavelength region. The six-position filter wheel contained 4 narrow spectral filters, one broadband and one blocking filter. At periselene (400 km) the HiRes/LIDAR imaged a 2.8 km swath width at 20-meter resolution. The LIDAR function detected differential signal return with a 40-meter range accuracy, with a maximum range capability of 640 km, limited by the bit counter in the range return counting clock.
Date: April 1, 1995
Creator: Ledebuhr, A.G.; Kordas, J.F. & Lewis, I.T.
Partner: UNT Libraries Government Documents Department

An Optimal t-{Delta}v Guidance Law for Intercepting a Boosting Target

Description: Lawrence Livermore National Laboratory (LLNL) have developed a new missile guidance law for intercepting a missile during boost phase. Unlike other known missile guidance laws being used today, the new t-{Delta}v guidance law optimally trades an interceptor's onboard fuel capacity against time-to-go before impact. In particular, this guidance law allows a missile designer to program the interceptor to maximally impact a boosting missile before burnout or burn termination and thus negating its ability to achieve the maximum kinetic velocity. For an intercontinental range ballistic missile (ICBM), it can be shown that for every second of earlier intercept prior to burnout, the ICBM ground range is reduced by 350 km. Therefore, intercepting a mere 15 seconds earlier would result in amiss of 5,250 km from the intended target or approximately a distance across the continental US. This paper also shows how the t-{Delta}v guidance law can incorporate uncertainties in target burnout time, predicted intercept point (PIP) error, time-to-go error, and other track estimation errors. The authors believe that the t-{Delta}v guidance law is a step toward the development of a new and smart missile guidance law that would enhance the probability of achieving a boost phase intercept.
Date: June 30, 2002
Creator: Ng, L.C.; Breitfeller, E. & Ledebuhr, A.G.
Partner: UNT Libraries Government Documents Department

Experiment to study the. beta. -decay of free atomic and molecular tritium. [For determining antineutrino mass]

Description: An apparatus is described which will allow the measurement of the ..beta..-decay of free tritium atoms and molecules for determining antineutrino mass. It consists of an RF dissociator, a long cylindrical decay region open at both ends, a guide field, and a magnetic spectrometer.
Date: January 1, 1982
Creator: Robertson, R.G.H.; Bowles, T.J.; Maley, M.; Browne, J.C.; Burritt, T.; Toevs, J. et al.
Partner: UNT Libraries Government Documents Department

First flight of the Cloud Detection Lidar Instrument Package

Description: The Cloud Detection Lidar Instrument Package is composed of three instruments: the Cloud Detection Lidar (CDL) and two Wide Field of View (WFOV) cameras. The CDL can be rotated to operate in either a nadir-looking or zenith-looking mode. The WFOV cameras provide imagery to complement the CDL measurements. One camera is fixed at nadir looking and the other at zenith looking. Only one camera may be operational at a time. All instruments were successfully flown in September--November 1995.
Date: March 1, 1996
Creator: Henderson, J.R.; Ledebuhr, A.G.; Cameron, G.; Carter, P.; Hugenberger, R.E.; Kordas, J.F. et al.
Partner: UNT Libraries Government Documents Department

Genius Sand: A Miniature Kill Vehicle Technology to Support Boost Phase Intercepts and Midcourse Engagements

Description: This paper summarizes Lawrence Livermore National Laboratory's (LLNL) approach to a proposed Technology Demonstration program for the development of a new class of miniature kill vehicles (MKVs), that they have termed Genius Sand (GS). These miniaturized kinetic kill vehicles offer new capabilities for boost phase intercept (BPI) missions, as well as midcourse intercepts and the defeat of advanced countermeasures. The specific GS MKV properties will depend on the choice of mission application and system architecture, as well as the level of coordinated or autonomous operations in these missions. In general the GS MKVs will mass from between 1 to 5 kilograms and have several hundred meters per second of {Delta}v and be capable of several g's of acceleration. Based on the results of their previous study effort, they believe that it is feasible to develop and integrate the required technologies into a fully functional GS MKV prototype within the scope of a three-year development effort. They will discuss some of the system architecture trades and applicable technologies that can be applied in an operational MKV system, as a guide to focus any technology demonstration program. They will present the results of a preliminary 6DOF analysis to determine the minimum capabilities of an MKV system. They also will discuss a preliminary design configuration of a 2 kg GS MKV that has between 300-500 m/s of {Delta}v and has at least 2-g's of acceleration capability. They believe a successful GS MKV development effort will require not only a comprehensive component miniaturization program, but a rapid hardware prototyping process, and the ability to utilize high fidelity ground testing methodologies.
Date: June 30, 2002
Creator: Ledebuhr, A.G.; Ng, L.C.; Kordas, J.F.; Jones, M.S. & McMahon, D.H.
Partner: UNT Libraries Government Documents Department

Autonomous, agile micro-satellites and supporting technologies

Description: This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSat with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.
Date: July 19, 1999
Creator: Breitfeller, E; Dittman, M D; Gaughan, R J; Jones, M S; Kordas, J F; Ledebuhr, A G et al.
Partner: UNT Libraries Government Documents Department

The Clementine longwave infrared camera

Description: The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.
Date: April 1, 1995
Creator: Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G. et al.
Partner: UNT Libraries Government Documents Department

Near-infrared camera for the Clementine mission

Description: The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The near-infrared (NIR) multi-spectral camera, one of two workhorse lunar mapping cameras (the other being the UV/visible camera), provided {approximately}200 in spatial resolution at 400 km periselene, and a 39 km across-track swath. This 1.9 kg infrared camera using a 256 x 256 InSb FPA viewed reflected solar illumination from the lunar surface and lunar horizon in the 1 to 3 {micro}m wavelength region, extending lunar imagery and mineralogy studies into the near infrared. A description of this light-weight, low power NIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.
Date: April 1, 1995
Creator: Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G. et al.
Partner: UNT Libraries Government Documents Department

Recent Development in Hydrogen Peroxide Pumped Propulsion

Description: This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.
Date: March 22, 2004
Creator: Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F et al.
Partner: UNT Libraries Government Documents Department