1 Matching Results

Search Results

Advanced search parameters have been applied.

Laboratory Investigations in Support of Dioxide-Limestone Sequestration in the Ocean

Description: Research under this Project has proven that liquid carbon dioxide can be emulsified in water by using very fine particles as emulsion stabilizers. Hydrophilic particles stabilize a CO{sub 2}-in-H{sub 2}O (C/W) emulsion; hydrophobic particles stabilize a H{sub 2}O-in-CO{sub 2} (W/C) emulsion. The C/W emulsion consists of tiny CO{sub 2} droplets coated with hydrophilic particles dispersed in water. The W/C emulsion consists of tiny H{sub 2}O droplets coated with hydrophobic particles dispersed in liquid carbon dioxide. The coated droplets are called globules. The emulsions could be used for deep ocean sequestration of CO{sub 2}. Liquid CO{sub 2} is sparsely soluble in water, and is less dense than seawater. If neat, liquid CO{sub 2} were injected in the deep ocean, it is likely that the dispersed CO{sub 2} droplets would buoy upward and flash into vapor before the droplets dissolve in seawater. The resulting vapor bubbles would re-emerge into the atmosphere. On the other hand, the emulsion is denser than seawater, hence the emulsion plume would sink toward greater depth from the injection point. For ocean sequestration a C/W emulsion appears to be most practical using limestone (CaCO{sub 3}) particles of a few to ten ?m diameter as stabilizing agents. A mix of one volume of liquid CO{sub 2} with two volumes of H{sub 2}O, plus 0.5 weight of pulverized limestone per weight of liquid CO{sub 2} forms a stable emulsion with density 1087 kg m{sup -3}. Ambient seawater at 500 m depth has a density of approximately 1026 kg m{sup -3}, so the emulsion plume would sink by gravity while entraining ambient seawater till density equilibrium is reached. Limestone is abundant world-wide, and is relatively cheap. Furthermore, upon disintegration of the emulsion the CaCO{sub 3} particles would partially buffer the carbonic acid that forms when CO{sub 2} dissolves in seawater, alleviating ...
Date: September 30, 2008
Creator: Golomb, Dan; Barry, Eugene; Ryan, David; Pennell, Stephen; Lawton, Carl; Swett, Peter et al.
Partner: UNT Libraries Government Documents Department