4 Matching Results

Search Results

Advanced search parameters have been applied.

Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

Description: A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.
Date: June 20, 2002
Creator: Bell, Z.W. & Lamberti, V.E.
Partner: UNT Libraries Government Documents Department

Monte Carlo Modeling of High-Energy Film Radiography

Description: High-energy film radiography methods, adapted in the past to performing specific tasks, must now meet increasing demands to identify defects and perform critical measurements in a wide variety of manufacturing processes. Although film provides unequaled resolution for most components and assemblies, image quality must be enhanced with much more detailed information to identify problems and qualify features of interest inside manufactured items. The work described is concerned with improving current 9 MeV nondestructive practice by optimizing the important parameters involved in film radiography using computational methods. In order to follow important scattering effects produced by electrons, the Monte Carlo N-Particle (MCNP) transport code was used with advanced, highly parallel computer systems. The work has provided a more detailed understanding of latent image formation at high X-ray energies, and suggests that improvements can be made in our ability to identify defects and to obtain much more detail in images of fine features.
Date: March 28, 2003
Creator: Miller, A. C., Jr.; Cochran, J.L. & Lamberti, V.E.
Partner: UNT Libraries Government Documents Department

Neutron Detection with Cryogenics and Semiconductors

Description: The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.
Date: March 10, 2005
Creator: Bell, Z. W.; Carpenter, D. A.; Cristy, S. S. & Lamberti, V. E.
Partner: UNT Libraries Government Documents Department

Neutron Detection with a Cryogenic Spectrometer

Description: Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from {sup 241}Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a detector would operate by detecting the heat pulses caused by neutron capture and scattering. To date, {sup 6}LiF has been the absorber of choice because relatively large crystals can be grown, and it is an insulating material with low heat capacity. Silver reports the fabrication of a {sup 6}LiF spectrometer operating at 328 mK and achieving a resolution of 39 keV. De Marcillac reports the fabrication of a spectrometer operating at 80 mK and achieving 16 keV resolution when bombarded with 5 MeV alpha particles. In this paper, we report preliminary results with a TiB{sub 2} absorber exposed to thermal neutrons. In contrast to lithium, whose chemistry selects for LiF as the absorber, boron offers a rich chemistry from which to select materials with high boron content. We will discuss the considerations governing the choice of absorber material ...
Date: June 23, 2003
Creator: Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A. & Cristy, S.S.
Partner: UNT Libraries Government Documents Department