7 Matching Results

Search Results

Advanced search parameters have been applied.

FNAL Booster intensity, extraction, and synchronization control for collider operation

Description: Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention.
Date: March 1, 1987
Creator: Ducar, R.J.; Lackey, J.R. & Tawzer, S.R.
Partner: UNT Libraries Government Documents Department

The FNAL injector upgrade

Description: The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.
Date: March 1, 2011
Creator: Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A. & /Fermilab
Partner: UNT Libraries Government Documents Department

New corrector system for the Fermilab booster

Description: We present an ambitious ongoing project to build and install a new corrector system in the Fermilab 8 GeV Booster. The system consists of 48 corrector packages, each containing horizontal and vertical dipoles, normal and skew quadrupoles, and normal and skew sextupoles. Space limitations in the machine have motivated a unique design, which utilizes custom wound coils around a 12 pole laminated core. Each of the 288 discrete multipole elements in the system will have a dedicated power supply, the output current of which is controlled by an individual programmable ramp. This paper describes the physics considerations which drove the design, as well as issues in the control of the system.
Date: June 1, 2007
Creator: Prebys, E.J.; Drennan, C.C.; Harding, D.J.; Kashikhin, V.; Lackey, J.R.; Makarov, A. et al.
Partner: UNT Libraries Government Documents Department

The FNAL Injector Upgrade Status

Description: The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.
Date: May 14, 2012
Creator: Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A et al.
Partner: UNT Libraries Government Documents Department

Design and fabrication of a multi-element corrector magnet for the Fermilab Booster

Description: A new package of six corrector elements has been designed to better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron. It incorporates both normal and skew orientations of dipole, quadrupole, and sextupole magnets. These new corrector magnets will be installed in the Fermilab Booster ring in place of old style corrector elements. A severe space restriction and rapid slew rate have posed special challenges. The magnet design, construction, and performance are presented.
Date: August 1, 2007
Creator: Makarov, A.; Drennan, C.; DiMarco, J.; Harding, David J.; Kashikhin, V.S.; Lackey, J.R. et al.
Partner: UNT Libraries Government Documents Department

Design and fabrication of a multi-element corrector magnet for the Fermilab Booster synchrotron

Description: To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and installation at 48 locations is planned. The density of elements and the rapid slew rate have posed special challenges. The magnet construction is presented along with DC measurements of the magnetic field.
Date: June 1, 2007
Creator: Harding, D.J.; DiMarco, J.; Drennan, C.C.; Kashikhin, V.S.; Kotelnikov, S.; Lackey, J.R. et al.
Partner: UNT Libraries Government Documents Department