20 Matching Results

Search Results

Advanced search parameters have been applied.

Scaling, Microstructure and Dynamic Fracture

Description: The relationship between pullback velocity and impact velocity is studied for different microstructures in Cu. A size distribution of potential nucleation sites is derived under the conditions of an applied stochastic stress field. The size distribution depends on flow stress leading to a connection between the plastic flow appropriate to a given microstructure and nucleation rate. The pullback velocity in turn depends on the nucleation rate resulting in a prediction for the relationship between pullback velocity and flow stress. The theory is compared to observations of Cu on Cu gas-gun experiments (10-50 GPa) for a diverse set of microstructures. The scaling law is incorporated into a 1D finite difference code and is shown to reproduce the experimental data with one adjustable parameter that depends only on a nucleation exponent, {Lambda}.
Date: December 21, 2005
Creator: Minich, R W; Kumar, M; Schwarz, A & Cazamias, J
Partner: UNT Libraries Government Documents Department

Shock Hugoniot of Single Crystal Copper

Description: The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from MD calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.
Date: August 28, 2009
Creator: Chau, R; Stolken, J; Asoka-Kumar, P; Kumar, M & Holmes, N C
Partner: UNT Libraries Government Documents Department

RAPID UNDERCOOLING AND REFREEZE IN LASER-SHOCK-MELTED BI(ZN)

Description: We completed experiments in which we used a high-power laser to shock-melt a Bi(Zn) alloy and refreeze it in the shock release wave. We recovered the samples post shot for microscopic analysis and compared our results with the results from similar prior experiments with pure Bi. The targets in both sets of experiments were four-layer targets composed of BK7 glass, Al, the elemental Bi or Bi(Zn) alloy, and a transparent diagnostic window. There is conductive heating of the Bi through the Al layer from the hot plasma at the Al/BK7 boundary that depends on the Al thickness. Since the Bi(Zn) targets had a much thicker Al layer than did the Bi targets, the two sets of targets had somewhat different thermal histories even though they were driven to the same pressure. In this presentation we compare the resolidified Bi(Zn) microstructure to that of the Bi, accounting for the different thermal histories.
Date: November 1, 2005
Creator: Jankowski, A; Colvin, J; Reed, B & Kumar, M
Partner: UNT Libraries Government Documents Department

Atomistic mechanism of shock-induced void collapse in nano-porous metals

Description: We have investigated the microstructural changes in ductile porous metals during high pressure-high strain rate loading employing atomistic simulations and explored their relation to recent experiments on polycrystalline copper samples. Molecular-dynamics simulations of shocks in porous, single crystal samples show the formation of nano-grains due to localized massive plastic deformation induced by the presence of voids. In the process of grain formation the individual voids serve as dislocation sources. The efficiency of these sources is further enhanced by their collective interaction which eventually leads to very high dislocation densities. In agreement with experimental studies, the simulations display a temporal delay of the particle velocity in comparison to perfectly crystalline samples. This delay increases with porosity. Our results point towards the importance of void-void interactions and collective effects during dynamic loading of porous materials.
Date: July 15, 2005
Creator: Erhart, P; Bringa, E; Kumar, M & Albe, K
Partner: UNT Libraries Government Documents Department

Electromagnetic Heating Methods for Heavy Oil Reservoirs

Description: The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.
Date: May 1, 2000
Creator: Sahni, A.; Kumar, M. & Knapp, R.B.
Partner: UNT Libraries Government Documents Department

Sn-substituted LaNi{sub 5} alloys for metal hydride electrodes

Description: This research examines the efficacy of tin additions to LaNi{sub 5} in improving the hydrogen storage capacity of the material during charging/discharging. Alloys were prepared using high energy ball milling (mechanical alloying), a technique superior to arc casting for alloying elements with a wide disparity in melting points. Characterization by X-ray diffraction and Rietveld analysis shows that tin preferentially occupies the Ni(3g) sites in the LaNi{sub 5} structure, and the unit cell volume increases linearly with tin content to the maximum tin solubility of 7.33 atomic percent (LaNi{sub 4.56}Sn{sub 0.44}). The authors found that powders prepared by mechanical alloying and not exposed to air require no activation to induce hydrogen absorption. The hydrogen storage capacity in the gas and electrochemical phase was measured as a function of tin content. They found that with increasing tin, the plateau pressure decreases logarithmically, whereas the hydrogen storage capacity decreases linearly.
Date: May 1, 1995
Creator: Wasz, M.L.; Schwarz, R.B.; Srinivasan, S. & Sridhar Kumar, M.P.
Partner: UNT Libraries Government Documents Department

Influence of Processing Method on the Grain Boundary Character Distribution and Network Connectivity

Description: There exists a growing body of literature that correlates the fraction of ''special'' boundaries in a microstructure, as described by the Coincident Site Lattice Model, to properties such as corrosion resistance, intergranular stress corrosion cracking, creep, etc. Several studies suggest that the grain boundary character distribution (GBCD), which is defined in terms of the relative fractions of ''special'' and ''random'' grain boundaries, can be manipulated through thermomechanical processing. This investigation evaluates the influence of specific thermomechanical processing methods on the resulting GBCD in FCC materials such as oxygen-free electronic (ofe) copper and Inconel 600. We also demonstrate that the primary effect of thermomechanical processing is to reduce or break the connectivity of the random grain boundary network. Samples of ofe Cu were subjected to a minimum of three different deformation paths to evaluate the influence of deformation path on the resulting GBCD. These include: rolling to 82% reduction in thickness, compression to 82% strain, repeated compression to 20% strain followed by annealing. In addition, the influence of annealing temperature was probed by applying, for each of the processes, three different annealing temperatures of 400, 560, and 800 C. The observations obtained from automated electron backscatter diffraction (EBSD) characterization of the microstructure are discussed in terms of deformation path, annealing temperature, and processing method. Results are compared to previous reports on strain-annealed ofe Cu and sequential processed Inconel 600. These results demonstrate that among the processes considered, sequential processing is the most effective method to disrupt the random grain boundary network and improve the GBCD.
Date: December 20, 1999
Creator: Kumar, M & King, W.E.
Partner: UNT Libraries Government Documents Department

Characterization of Field Exposed Thin Film Modules: Preprint

Description: Test arrays of thin film modules have been deployed at the Solar Energy Centre near New Delhi, India since 2002-2003. Performances of these arrays were reported by O.S. Sastry [1]. This paper reports on NREL efforts to support SEC by performing detailed characterization of selected modules from the array. Modules were selected to demonstrate both average and worst case power loss over the 8 years of outdoor exposure. The modules characterized included CdTe, CIS and three different types of a-Si. All but one of the a-Si types were glass-glass construction. None of the modules had edge seals. Detailed results of these tests are presented along with our conclusions about the causes of the power loss for each technology.
Date: June 1, 2012
Creator: Wohlgemuth, J. H.; Sastry, O. S.; Stokes, A.; Singh, Y. K. & Kumar, M.
Partner: UNT Libraries Government Documents Department

PLASTIC BEHAVIOR OF POLYCRYSTALLINE TANTALUM IN THE 5 x 10^7/s REGIME

Description: The goal of this experiment is to investigate the plastic response of Tantalum to dynamic loading at high strain rates. The samples used were derived from high purity rolled plate, polished down to thicknesses in the range 25-100 {micro}m. Dynamic loading was applied by direct laser ablation of the sample, with pulses up to 10 ns long, at the Jupiter Laser Facility. The elastic-plastic wave structure was measured using two line VISAR systems of different sensitivity, and strain rates were inferred from the rise time of the waves. The elastic wave amplitudes indicated flow stresses between 2 and 3 GPa, depending on the sample thickness. Samples were recovered for post-shot metallographic analysis.
Date: August 6, 2011
Creator: Hammel, B D; Swift, D C; El-Dasher, B S; Kumar, M; Collins, G W & Florando, J
Partner: UNT Libraries Government Documents Department

Role of twinning in the optimization of the grain boundary character distribution

Description: The grain boundary character distribution (GBCD) is a microstructural property that describes the proportions of �special� and �random� boundaries as defined by the coincident site lattice model. Recently, there has been increased attention on determination of the GBCD and manipulation of the relative fractions in the microstructure through thermomechanical processing in order to improve material� s properties like corrosion and creep resistance. Most of the �optimization� treatments reported in the literature have been performed on fee materials with relatively low stacking fault energies and have resulted in microstructures with high fractions of {Sigma}3, {Sigma}9, and {Sigma}27 boundaries. It could be interpreted that annealing twins are solely required to improve the GBCD. However, in order to optimize the properties, it appears imperative that the formation of annealing twins disrupt the connectivity of the random boundary network, thus implying that {Sigma}3{sup n} reactions and resultant triple lines are critical. Experiments to modify the GBCD of oxygen-free electronic Cu and Inconel 600 through thermomechanical processing are presented and discussed in light of observations of the deformed and recrystallized microstructures.
Date: January 8, 1999
Creator: King, W E; Kumar, M & Schwartz, A J
Partner: UNT Libraries Government Documents Department

Role of electronic, geometric, and surface properties on the mechanism of the electrochemical hydriding/dehydriding reactions

Description: Since 1990 there has been an ongoing collaboration among the authors to investigate the role of individual elements on the thermodynamics and kinetics of hydriding/dehydriding reactions. This review article presents the electrochemical and physicochemical characteristics of hydriding/dehydriding reactions from the point of view of their dependence on electronic, geometric and surface properties of the hydride materials. X-ray absorption spectroscopy (XAS), x-ray diffraction spectroscopy (XRD) and scanning vibrating electrode technique (SVET) studies were based on AB{sub 5} type alloys, partially substituted by other elements. Expansion of the unit cell volume and a larger Ni d band vacancy are beneficial for increasing the amount of the hydrogen storage. XAS and SVET showed that the Ce substitution for La in an AB{sub 5} alloy enhances the lifetime of hydride electrode.
Date: March 1996
Creator: Srinivasan, S.; Zhang, W. & Kumar, M. P. S.
Partner: UNT Libraries Government Documents Department

Modifications in the grain boundary character distribution in FCC materials through thermomechanical processing

Description: Recently, a body of work has emerged that indicates the potential to improve certain materials' properties through thermomechanical processing (TMP) solely by controlling grain misorientations. The grain boundary character distribution (GBCD) is defined as a microstructural property that describes the proportions of ''special'' and ''random'' boundaries with reference to the coincident site lattice model. Most of the ''optimization'' treatments reported in the literature have been performed on f.c.c. metals and alloys with medium to low stacking fault energies and have resulted in microstructures with high fractions of {Sigma}3, {Sigma}9, and {Sigma}27 boundaries, or {Sigma}3{sup n} type boundaries. It could be interpreted that only an increased incidence of annealing twinning is required to improve the GBCD. However, it also appears imperative that the formation of annealing twins disrupt the connectivity of the random boundary network, thus implying that {Sigma}3{sup n} reactions and resultant triple junctions are critical. Experiments to modify the GBCD in model materials like oxygen-free electronic Cu and Inconel 600 are presented and the efficacy of the processing routes is assessed in terms of the random boundary network and evolution of texture in the processed microstructures.
Date: March 1999
Creator: King, W. E.; Kumar, M. & Schwartz, A. J.
Partner: UNT Libraries Government Documents Department

Coupling Automated Electron Backscatter Diffraction with Transmission Electron and Atomic Force Microscopies

Description: Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of special and random grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM) and atomic force microscopy (AFM) to elucidate these fundamental mechanisms. This investigation provides evidence that grain boundary network engineering and the formation of annealing twins disrupt the connectivity of the random grain boundary network and is likely responsible for the experimentally observed improvement in properties. This work illustrates that coupling of automated EBSD with other microstructural probes such as TEM and AFM provides data of greater value than any single technique in isolation. The coupled techniques have been applied to aid in understanding the underlying mechanisms of grain boundary network engineering and the corrosion properties of individual boundaries.
Date: January 26, 2000
Creator: Schwartz, A.J.; Kumar, M.; Bedrossian, P.J. & King, W.E.
Partner: UNT Libraries Government Documents Department

ACTIVATION ENERGY FOR GRAIN GROWTH IN BISMUTH COATINGS

Description: The knowledge of both activation energy and diffusion coefficient is needed for a predictive processing of grain size in coatings. However, for metals as Bismuth there is insufficient information available in the literature for these parameters. To determine these values, a method is adopted wherein an examination of the grain size is conducted for coatings deposited isothermally. The exponent for grain growth with time is determined, thereby enabling quantification of the activation energy and diffusion coefficient. Bismuth coatings that range from 10 {micro}m to 1 mm thick are deposited using electron-beam evaporation onto temperature-controlled substrate surfaces of glass and lithium fluoride. The grain size of each coating is measured upon examination of the microstructure in cross-section using the intercept method. Ideal grain growth is observed over the experimental range of deposition temperatures examined from 317 to 491 K. The activation energy (Q) for grain growth in bismuth is fit as 0.47 eV {center_dot} atom{sup -1} with a diffusion coefficient (D{sub 0}) of 3.3 x 10{sup -4} cm{sup 2} {center_dot} sec{sup -1}.
Date: September 9, 2005
Creator: Jankowski, A F; Hayes, J P; Smith, R F; Reed, B W; Kumar, M & Colvin, J D
Partner: UNT Libraries Government Documents Department

High-pressure, High-strain-rate Materials Effects

Description: A 3-year LDRD-ER project to study the response of shocked materials at high pressure and high strain rate has concluded. This project involved a coordinated effort to study single crystal samples that were shock loaded by direct laser irradiation, in-situ and post-recovery measurements, and molecular dynamics and continuum modeling. Laser-based shock experiments have been conducted to study the dynamic response of materials under shock loading materials at a high strain-rate. Experiments were conducted at pressures above the published Hugoniot Elastic Limit (HEL). The residual deformation present in recovered samples was characterized by transmission electron microscopy, and the response of the shocked lattice during shock loading was measured by in-situ x-ray diffraction. Static film and x-ray streak cameras recorded x-rays diffracted from lattice planes of Cu and Si both parallel and perpendicular to the shock direction. Experiments were also conducted using a wide-angle detector to record x-rays diffracted from multiple lattice planes simultaneously. This data showed uniaxial compression of Si (100) along the shock direction and 3-dimensional compression of Cu (100). In the case of the Si diffraction, there was a multiple wave structure observed. We present results of shocked Si and Cu obtained with a new large angle diffraction diagnostic, and discuss the results in the context of detailed molecular dynamics simulations and post-processing.
Date: March 4, 2004
Creator: Kalantar, D; Belak, J; Bringa, E; Budil, K; Colvin, J; Kumar, M et al.
Partner: UNT Libraries Government Documents Department

Atomistic modeling of shock-induced void collapse in copper

Description: Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
Date: March 9, 2005
Creator: Davila, L P; Erhart, P; Bringa, E M; Meyers, M A; Lubarda, V A; Schneider, M S et al.
Partner: UNT Libraries Government Documents Department

Validation and performance of the LHC cryogenic system through commissioning of the first sector

Description: The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.
Date: December 1, 2007
Creator: Serio, L.; Bouillot, A.; Casas-Cubillos, J.; Chakravarty, A.; Claudet, S.; Gicquel, F. et al.
Partner: UNT Libraries Government Documents Department

Phase stability and mechanical properties of c-22 alloy aged in the temperature range 590 to 760 degree c for 16,000 hours

Description: The phase stability of C-22 alloy (UNS #N06022) was studied by aging samples at 593, 649, 704 and 760°C for 2000 h (2.7 mo) and 16,000 h (1.8 yr). The tensile properties and the Charpy impact toughness of these samples were measured in the mill annealed condition as well as after aging. The microstructures of samples aged 16,000 hours were examined using scanning and transmission electron microscopy (SEM and TEM). Preliminary TEM results suggest that m phase forms at all temperatures investigated. Discrete carbide particles in addition to a film with very uniform thickness which appears to be m phase formed on grain boundaries in the sample aged at 593°C. The ordered Ni<sub>2</sub>(Cr, Mo) phase was also seen in this sample. At the higher aging temperatures, mainly m phase forms covering all the grain boundaries and also distributed throughout the bulk. Although strength increased somewhat with aging, the ductility decreased due to the formation of these grain boundary precipitates and brittle intermetallics.
Date: December 1998
Creator: Edgecumbe Summers, T. S.; Kumar, M.; Mathews, S. J.; Rebak, R. B. & Wall, M. A.
Partner: UNT Libraries Government Documents Department

Effect of Ce composition on the structural and electronic characteristics of some metal hydride electrodes: A XANES and EXAFS investigation

Description: Substitution of the B component in the prototype AB{sub 5} type (LaNi{sub 5}) metal hydride alloys have resulted in their increased acceptance as anodes for rechargeable alkaline batteries. Recently substitution of the A component (La) for imparting properties such as increased corrosion resistance has received attention. This investigation deals with the role of Ce as a substituent for the La and its effect in terms of corrosion resistance. The alloys chosen have the general composition of La{sub x}Ce{sub 1-x}B{sub 5} (x = 1, 0.8, 0.5 and 0.25) where B is Ni{sub 3.55}CO{sub 0.75}Mn{sub 0.4}Al{sub 0.3} together with alloys containing the mischmetal (Mm) as the A component (both synthetic and commercial). Electrochemical cycling results show that Ce lowers the capacity loss in the alloys and that this effect is not a simple function of the extent of lattice expansion during hydriding as was previously suggested. Correlation of the electrochemical and XAS results show that capacity loss is directly related to the extent of Ni corrosion. Effect of Ce substitution seems to result in a stable Ce oxide hydroxide coating which imparts the corrosion resistance.
Date: December 31, 1994
Creator: Mukerjee, S.; McBreen, J.; Reilly, J.J.; Johnson, J.R.; Adzic, G.; Kumar, M.P.S. et al.
Partner: UNT Libraries Government Documents Department