4 Matching Results

Search Results

Advanced search parameters have been applied.

PARTICIPANT SUPPORT FOR THE 2010 GORDON RESEARCH CONFERENCE ON PLASMA PROCESSING SCIENCE (JULY 11-16,2010)

Description: The 2010 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in low temperature plasma science and will explore the applications of low temperature plasma technology relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy and the production of fuels from renewable feedstocks, plasma-enabled medicine and sterilization, and environmental remediation and waste treatment. The conference will bring together in an informal atmosphere leaders in the field with junior investigators and graduate students. The special format of the Gordon Conferences, with programmed discussion sessions and ample time for informal gatherings in the afternoons and evenings, will provide for a fertile atmosphere of brainstorming and creative thinking among the attendees.
Date: June 14, 2011
Creator: Kortshagen, Uwe
Partner: UNT Libraries Government Documents Department

Plasma Processing of Advanced Materials

Description: Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.
Date: February 28, 2005
Creator: Heberlein, Joachim, V.R.; Pfender, Emil & Kortshagen, Uwe
Partner: UNT Libraries Government Documents Department

Final Report for Award DE-FG02-99ER54554 Kinetics of Electron Fluxes in Low-Pressure Nonthermal Plasmas

Description: This grant has focused on the study of several aspects of electron kinetics in low pressure plasmas. Entirely new effects arise from the fact that the electron kinetics is governed by non-local effects, in which the electron distribution function is not equilibrium with the local electric field but is governed by spatial transport effects. In this grant, we were able to demonstrate several previously un-studied effects which are a direct result of the nonlocal transport. These are: (1) The existence of a ''convective cell' in electron phase space. The phenomenon was observed and studied in CW plasma conditions. (2) The occurrence of non-collisional cooling of electrons through an effect known as ''diffusive cooling''.
Date: December 13, 2004
Creator: Kortshagen, Uwe
Partner: UNT Libraries Government Documents Department

Final Report DE-FG02-00ER54583: "Physics of Atmospheric Pressure Glow Discharges" and "Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas"

Description: This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.
Date: June 1, 2009
Creator: Kortshagen, Uwe; Heberlein, Joachim & Girshick, Steven L.
Partner: UNT Libraries Government Documents Department