3 Matching Results

Search Results

Advanced search parameters have been applied.

The influence of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers

Description: Impact of Ar gas pressure (1-4 mTorr) on the growth of amorphous interlayers in Mo/Si multilayers deposited by magnetron sputtering was investigated by small-angle x-ray scattering ({lambda} = 0.154 nm) and methods of cross-sectional transmission electron microscopy. Some reduction of thickness of the amorphous inter-layers with Ar pressure increase was found, while composition of the layers was enriched with molybdenum. The interface modification resulted in raise of EUV reflectance of the Mo/Si multilayers.
Date: August 8, 2011
Creator: Pershyn, Yuriy; Gullikson, Erik; Artyukov, Igor; Kondratenko, Valeriy; Sevryukova, Victoriya; Voronov, Dmitriy et al.
Partner: UNT Libraries Government Documents Department

Fabrication and characterization of a new high density Sc/Si multilayer sliced grating

Description: State of the art soft x-ray spectroscopy techniques like Resonant Inelastic X-ray Scattering (RIXS) require diffraction gratings which can provide extremely high spectral resolution of 105-106. This problem may be addressed with a sliced multilayer grating with an ultra-high groove density (up to 50,000 mm-1) proposed in the recent publication [Voronov, D. L., Cambie, R., Feshchenko, R. M., Gullikson, E., Padmore, H. A., Vinogradov, A. V., Yashchuk, V. V., Proc. SPIE 6705, 67050E (2007)]. It has been suggested to fabricate such a grating by deposition of a soft x-ray multilayer on a substrate which is a blazed saw-tooth grating (echellette) with low groove density. Subsequent polishing applied to the coated grating removes part of the coating and forms an oblique-cut multiline structure that is a sliced multilayer grating. The resulting grating has a short-scale periodicity of lines (bilayers), which is defined by the multilayer period and the oblique-cut angle. We fabricated and tested a Sc/Si multilayer sliced grating suitable for EUV applications, which is a first prototype based on the suggested technique. In order to fabricate an echellette substrate, we used anisotropic KOH etching of a Si wafer. The etching regime was optimized to obtain smooth and flat echellette facets. A Sc/Si multilayer was deposited by dc-magnetron sputtering, and after that it was mechanically polished using a number of diamond pastes. The resulting sliced grating prototype with ~;;270 nm line period has demonstrated a dispersive ability in the 41-49 nm photon wavelength range with a diffraction efficiency of ~;;7percent for the optimized 38th order assigned to the echellette grating of 10 mu m period.
Date: July 21, 2008
Creator: Source, Advanced Light; Voronov, Dmitriy L.; Cambie, Rossana; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard et al.
Partner: UNT Libraries Government Documents Department

Single shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution

Description: We have demonstrated near-wavelength resolution microscopy in the extreme ultraviolet. Images of 50 nm diameter nanotubes were obtained with a single {approx}1 ns duration pulse from a desk-top size 46.9 nm laser. We measured the modulation transfer function of the microscope for three different numerical aperture zone plate objectives, demonstrating that 54 nm half-period structures can be resolved. The combination of near-wavelength spatial resolution and high temporal resolution opens myriad opportunities in imaging, such as the ability to directly investigate dynamics of nanoscale structures.
Date: January 7, 2008
Creator: Jones, Juanita; Brewer, Courtney A.; Brizuela, Fernando; Wachulak, Przemyslaw; Martz, Dale H.; Chao, Weilun et al.
Partner: UNT Libraries Government Documents Department