2 Matching Results

Search Results

Advanced search parameters have been applied.

Shock induced multi-mode damage in depleted uranium

Description: Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.
Date: January 1, 2009
Creator: Koller, Darcie D; Cerreta, Ellen K & Gray, Ill, George T
Partner: UNT Libraries Government Documents Department

TRIDENT flyer plate Impact technique: comparison to gas gun plate impact technique

Description: This report describes the details of a series of plate impact experiments that were conducted on a gas gun in an effort to validate a new technique for plate impact using the TRIDENT laser to launch thin flyers. The diagnostics fielded were VISAR and identical samples and impactors were used on both platforms. All experimenters agree that the VISAR results should have agreed between the two experimental platforms. The VISAR results did not agree across the platforms and experimenters offer explanations and implications for this outcome.
Date: March 1, 2009
Creator: Koller, Darcie D.; Gray, George T., III & Luo, Sheng-Nian
Partner: UNT Libraries Government Documents Department