10 Matching Results

Search Results

Advanced search parameters have been applied.

Production of jet fuels from coal-derived liquids

Description: Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.
Date: June 1, 1990
Creator: Knudson, C.L.
Partner: UNT Libraries Government Documents Department

Multiple-use marketing of lignite

Description: Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.
Date: September 1, 1993
Creator: Knudson, C. L.
Partner: UNT Libraries Government Documents Department

Direct liquefaction of low-rank coals

Description: Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.
Date: April 1, 1988
Creator: Rindt, J.R.; Hetland, M.D.; Knudson, C.L. & Willson, W.G.
Partner: UNT Libraries Government Documents Department

Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent

Description: Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test ...
Date: August 1, 1995
Creator: Aulich, T.R.; Grisanti, A.A. & Knudson, C.L.
Partner: UNT Libraries Government Documents Department

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

Description: The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.
Date: January 1, 1987
Creator: Willson, W.G.; Knudson, C.L. & Rindt, J.R.
Partner: UNT Libraries Government Documents Department

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

Description: The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.
Date: January 1, 1987
Creator: Willson, W.G.; Knudson, C.L. & Rindt, J.R.
Partner: UNT Libraries Government Documents Department

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

Description: The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.
Date: January 1, 1987
Creator: Willson, W.G.; Knudson, C.L.; Rindt, J.R. & Smith, E. (North Dakota Univ., Grand Forks, ND (USA))
Partner: UNT Libraries Government Documents Department

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

Description: The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results of the analysis of dynaphen samples: a process for the hydrodealkylation of cresylic acids. 4 refs., 14 tabs.
Date: January 1, 1988
Creator: Willson, W.G.; Knudson, C.L.; Rindt, J.R. & Smith, E. (North Dakota Univ., Grand Forks, ND (USA))
Partner: UNT Libraries Government Documents Department

Direct liquefaction of low-rank coals. Annual technical report, April 1, 1987--March 31, 1988 including quarterly technical progress report, January--March 1988: Task 5.1

Description: Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.
Date: April 1, 1988
Creator: Rindt, J. R.; Hetland, M. D.; Knudson, C. L. & Willson, W. G.
Partner: UNT Libraries Government Documents Department

Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

Description: Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)
Date: April 1, 1987
Creator: Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R. et al.
Partner: UNT Libraries Government Documents Department