23 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

Description: Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on ...
Date: April 10, 1999
Creator: Schmidt, A.J.; Klinger, G.S. & Bredt, P.R.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-SX-106: Results from samples collected on 3/24/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-SX-106 (referred to as Tank SX-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 4 were observed above the 5-ppbv reporting cutoff. Three tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 7 organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-106. Carbon dioxide (CO{sub 2}) was the only permanent gas detected. Tank SX-106 is on the Ferrocyanide Watch List.
Date: November 1, 1995
Creator: Klinger, G.S.; Clauss, T.W. & Litgotke, M.W.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of Waste Tank 241-S-111: Results from samples collected on 3/21/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-111 (referred to as Tank S-111). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, seven were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 98% of the total organic components in Tank S-111. Two permanent gases, hydrogen (H{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank S-111 is on the Hydrogen Watch List.
Date: October 1, 1995
Creator: Klinger, G.S.; Clauss, T.W. & Ligotke, M.W.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste tank 241-TX-105: Results from samples collected on December 20, 1994. Waste Tank Vapor Project

Description: This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-TX-105. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text.
Date: June 1, 1995
Creator: Klinger, G.S.; Ligotke, M.W. & Lucke, R.B.
Partner: UNT Libraries Government Documents Department

Waste Tank Vapor Program: Vapor space characterization of waste tank 241;C-102: Results from samples collected on August 23, 1994

Description: This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-C-102. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text.
Date: October 1, 1995
Creator: Klinger, G.S.; Clauss, T.W. & Ligotke, M.W.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-U-106: Results from samples collected on March 7, 1995. Waste Tank Vapor Program

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O) Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. The NH{sub 3} concentration was 16% greater than that determined from an ISS sample obtained in August 1994; the H{sub 2}O concentration was about 10% less. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 5 were observed in two or more canisters above the 5-ppbv reporting cutoff. Eleven organic tentatively identified compounds (TICS) were observed in two or more canisters above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations account for approximately 90% of the total organic components in Tank U-106. Three permanent gases, nitrous oxide (N{sub 2}O), hydrogen (H{sub 2}) and carbon dioxide (COD were also detected.
Date: July 1, 1995
Creator: Klinger, G.S.; Lucke, R.B. & McVeety, B.D.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of Waste Tank 241-TY-104: Results from samples collected on 4/27/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 8 were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 94% of the total organic components in Tank TY-104. Nitrous oxide (N{sub 2}O) was the only permanent gas detected in the tank-headspace samples. Tank TY-104 is on the Ferrocyanide Watch List.
Date: October 1, 1995
Creator: Klinger, G.S.; Olsen, K.B. & Clauss, T.W.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-BY-103: Results from samples collected on 11/1/94

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-103 (referred to as Tank BY-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Trends in NH{sub 3} and H{sub 2}O samples indicated a possible minor sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for target organic analytes, 39 TO-14 compounds, plus an additional 14 analytes. Of these, four were observed above the 5-ppbv reporting cutoff. Fourteen organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 88% of the total organic components in Tank BY-103. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected in the tank headspace. Carbon monoxide (CO) and carbon dioxide (CO{sub 2}) were detected in the ambient air sample. Tank BY-103 is on the Ferrocyanide Watch List.
Date: October 1, 1995
Creator: McVeety, B.D.; Klinger, G.S. & Clauss, T.W.
Partner: UNT Libraries Government Documents Department

Drying results of K-Basin fuel element 0309M (Run 3)

Description: An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-West Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from K-West canister 0309M during the second fuel selection campaign, conducted in 1996, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. The fuel element was broken in two pieces, with a relatively clean fracture, and the larger piece was tested. A gray/white coating was observed. This was the first test of a damaged fuel element in the furnace. K-West canisters can hold up to seven complete fuel assemblies, but, for purposes of this report, the element tested here is designated as Element 0309M. Element 0309M was subjected to drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step.
Date: July 1, 1998
Creator: Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Drying results of K-Basin fuel element 5744U (Run 4)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fourth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 5744U. This element (referred to as Element 5744U) was stored underwater in the K-West Basin from 1983 until 1996. Element 5744U was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.
Date: July 1, 1998
Creator: Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Drying results of K-Basin fuel element 1990 (Run 1)

Description: The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.
Date: June 1, 1998
Creator: Marschman, S.C.; Abrefah, J.; Klinger, G.S.; Oliver, B.M.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Spent fuel drying system test results (second dry-run)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.
Date: July 1, 1998
Creator: Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Spent fuel drying system test results (first dry-run)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory ...
Date: July 1, 1998
Creator: Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Drying results of K-Basin fuel element 1164M (run 6)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the sixth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 1164 M. This element (referred to as Element 1164M) was stored underwater in the K-West Basin from 1983 until 1996. Element 1164M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.
Date: August 1, 1998
Creator: Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Drying Results of K-Basin Fuel Element 6603M (Rune 5)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium spent nuclear fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fifth of those tests conducted on an N-Reactor outer fuel element (6603M) which had been stored underwater in the Hanford 100 Area K-West basin from 1983 until 1996. This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments which were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0. The test conditions and methodologies are given in Section 3.0. Inspections on the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0. Discussion of the results is given in Section 6.0.
Date: September 24, 1999
Creator: Oliver, B.M.; Ritter, G.A.; Klinger, G.S.; Abrefah, J.; Greenwood, L.R.; MacFarlan, P.J. et al.
Partner: UNT Libraries Government Documents Department

Drying Results of K-Basin Fuel Element 6513U (Run 8)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the eighth of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 6513U. This element (referred to as Element 6513U) was stored underwater in the K-West Basin from 1983 until 1996. Element 6513U was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0 and discussed in Section 6.0.
Date: August 11, 1999
Creator: Oliver, B. M.; Klinger, G. S.; Abrefah, J.; Marschman, S. C.; MacFarlan, P. J. & Ritter, G. A.
Partner: UNT Libraries Government Documents Department

Drying Results of K-Basin Fuel Element 2660M (Run 7)

Description: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the seventh of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 2660M. This element (referred to as Element 2660M) was stored underwater in the K-West Basin from 1983 until 1996. Element 2660M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.
Date: July 26, 1999
Creator: Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J. & Ritter, G.A.
Partner: UNT Libraries Government Documents Department

Drying results of K-Basin fuel element 3128W (run 2)

Description: An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional {approximately}0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at {approximately}180 C. This additional water is attributed to decomposition of a uranium hydrate (UO{sub 4}{center_dot}4H{sub ...
Date: July 1, 1998
Creator: Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A. et al.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-U-103: Results from samples collected on 2/15/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-103 (referred to as Tank U-103). The results described her were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 90% of the total organic components in Tank U-103. Two permanent gases, hydrogen (H{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank U-103 is on the Hydrogen Watch List.
Date: November 1, 1995
Creator: Ligotke, M.W.; Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B. et al.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List.
Date: November 1, 1995
Creator: Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B. et al.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste tank 241-U-111: Results from samples collected on February 28, 1995. Waste Tank Vapor Program

Description: This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-U-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text.
Date: July 1, 1995
Creator: Clauss, T. W.; Pool, K. H.; McVeety, B. D.; Bredt, O. P.; Goheen, S. C.; Ligotke, M. W. et al.
Partner: UNT Libraries Government Documents Department

Waste Tank Vapor Program: Vapor space characterization of waste tank 241-T-111. Results from samples collected on January 20, 1995

Description: This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-T-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text.
Date: October 1995
Creator: Klinger, G. S.; Clauss, T. W.; Ligotke, M. W.; Pool, K. H.; McVeety, B. D.; Olsen, K. B. et al.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of waste Tank 241-SX-103: Results from samples collected on 3/23/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage tank 241-SX-103 (referred to as Tank SX-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, two were observed above the 5-ppbv reporting cutoff. Two tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The four organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-103. Carbon dioxide (CO{sub 2}) was the only permanent gas detected in the tank-headspace samples. Tank SX-103 is on the Hydrogen Watch List.
Date: November 1, 1995
Creator: Ligotke, M.W.; Clauss, T.W.; Pool, K.H.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B. et al.
Partner: UNT Libraries Government Documents Department