20 Matching Results

Search Results

Advanced search parameters have been applied.

Shock timing on the National Ignition Facility: the first precision tuning series

Description: Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (rR), which show the highest fuel compression (rR {approx} 1.0 g/cm{sup 2}) measured to date.
Date: October 27, 2011
Creator: Robey, H F; Celliers, P M; Kline, J L & Mackinnon, A J
Partner: UNT Libraries Government Documents Department

Design Calculations For NIF Convergent Ablator Experiments

Description: The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash rhor, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.
Date: October 25, 2011
Creator: Olson, R E; Hicks, D G; Meezan, N B; Callahan, D A; Landen, O L; Jones, O S et al.
Partner: UNT Libraries Government Documents Department

Ion dynamics in helicon sources.

Description: Recent experiments have demonstrated that ion dominated phenomena, such as the lower hybrid resonance, can play an important role in helicon source operation. In this work, we review recent ion heating measurements and the role of the slow wave in heating ions at the edge of helicon. sources. We also discuss the relationship between parametrically driven waves and ion heating near the rf antenna in helicon sources. Recent measurements of parallel and rotational ion flows in helicon sources have important implications for particle confinement, instability growth, and helicon source operation. In this work we present new measurements of ion flows and summarize the important features of the flows.
Date: January 1, 2002
Creator: Kline, J. L. (John L.); Balkey, M. M. (Matthew M.); Keiter, P. A. (Paul A.); Scime, Earl E.; Keesee, Anne M.; Sun, X. et al.
Partner: UNT Libraries Government Documents Department

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

Description: A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.
Date: May 1, 2012
Creator: Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E et al.
Partner: UNT Libraries Government Documents Department

National Ignition Campaign Hohlraum Energetics

Description: The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.
Date: November 16, 2009
Creator: Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G et al.
Partner: UNT Libraries Government Documents Department

Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

Description: A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.
Date: November 22, 2010
Creator: Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A et al.
Partner: UNT Libraries Government Documents Department

Shock timing on the National Ignition Facility: First Experiments

Description: An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.
Date: October 24, 2011
Creator: Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V et al.
Partner: UNT Libraries Government Documents Department