29 Matching Results

Search Results

Advanced search parameters have been applied.

In-Process Detection of Weld Defects Using Laser-Based Ultrasonic Lamb Waves

Description: Laser-based ultrasonic (LBU) measurement shows great promise for on-line monitoring of weld quality in tailor-welded blanks. Tailor-welded blanks are steel blanks made from plates of differing thickness and/or properties butt-welded together; they are used in automobile manufacturing to produce body, frame, and closure panels. LBU uses a pulsed laser to generate the ultrasound and a continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation to perform ultrasonic inspection. LBU enables in-process measurements since there is no sensor contact or near-contact with the workpiece. The authors have used laser-generated plate (Lamb) waves to propagate from one plate into the weld nugget as a means of detecting defects. This report recounts an investigation of a number of inspection architectures based on processing of signals from selected plate waves, which are either reflected from or transmitted through the weld zone. Bayesian parameter estimation and wavelet analysis (both continuous and discrete) have shown that the LBU time-series signal is readily separable into components that provide distinguishing features, which describe weld quality. The authors anticipate that, in an on-line industrial application, these measurements can be implemented just downstream from the weld cell. Then the weld quality data can be fed back to control critical weld parameters or alert the operator of a problem requiring maintenance. Internal weld defects and deviations from the desired surface profile can then be corrected before defective parts are produced. The major conclusions of this study are as follows. Bayesian parameter estimation is able to separate entangled Lamb wave modes. Pattern recognition algorithms applied to Lamb mode features have produced robust features for distinguishing between several types of weld defects. In other words, the information is present in the output of the laser ultrasonic hardware, and it is feasible to extract it. Wavelet analysis produces results ...
Date: January 4, 2001
Creator: Kercel, S.W.
Partner: UNT Libraries Government Documents Department

Extracting a Whisper from the DIN: A Bayesian-Inductive Approach to Learning an Anticipatory Model of Cavitation

Description: For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.
Date: November 7, 1999
Creator: Kercel, S.W.
Partner: UNT Libraries Government Documents Department

Inductive learning as a fusion engine for mine detection

Description: Semiotics is defined by some researchers as {open_quotes}the study of the appearance (visual or otherwise) meaning, and use of symbols and symbol systems.{close_quotes} Semiotic fusion of data from multiple sensory sources is a potential solution to the problem of landmine detection. This turns out to be significant, because notwithstanding the diversity of sensor technologies being used to attack the problem, there is no single effective landmine sensor technology. The only practical, general-purpose mine detector presently available is the trained dog. Most research into mine-detection technology seeds to emulate the dog`s seemingly uncanny abilities. An ideal data-fusion system would mimic animal reaction, with the brain`s perceptive power melding multiple sensory cues into an awareness of the size and location of a mine. Furthermore, the fusion process should be adaptive, with the skill at combining cues into awareness improving with experience. Electronic data-fusion systems reported in the countermine literature use conventional vector-based pattern recognition methods. Although neural nets are popular, they have never satisfactorily met the challenge. Despite years of investigation, nobody has ever found a vector space representation that reliably characterizes mine identity. This strongly suggests that the features have not been found because researchers have been looking for the wrong characteristics. It is worth considering that dogs probably do not represent data as mathematical number lists, but they almost certainly represent data via semiotic structures.
Date: August 1, 1997
Creator: Kercel, S.W. & Dress, W.B.
Partner: UNT Libraries Government Documents Department

Feasibility of an anticipatory noncontact precrash restraint actuation system

Description: The problem of providing an electronic warning of an impending crash to a precrash restraint system a fraction of a second before physical contact differs from more widely explored problems, such as providing several seconds of crash warning to a driver. One approach to precrash restraint sensing is to apply anticipatory system theory. This consists of nested simplified models of the system to be controlled and of the system`s environment. It requires sensory information to describe the ``current state`` of the system and the environment. The models use the sensory data to make a faster-than-real-time prediction about the near future. Anticipation theory is well founded but rarely used. A major problem is to extract real-time current-state information from inexpensive sensors. Providing current-state information to the nested models is the weakest element of the system. Therefore, sensors and real-time processing of sensor signals command the most attention in an assessment of system feasibility. This paper describes problem definition, potential ``showstoppers,`` and ways to overcome them. It includes experiments showing that inexpensive radar is a practical sensing element. It considers fast and inexpensive algorithms to extract information from sensor data.
Date: 1995
Creator: Kercel, S. W. & Dress, W. B.
Partner: UNT Libraries Government Documents Department

Event identification by acoustic signature recognition

Description: Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.
Date: July 1, 1995
Creator: Dress, W.B. & Kercel, S.W.
Partner: UNT Libraries Government Documents Department

A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

Description: The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants while it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.
Date: February 1, 1995
Creator: Kercel, S. W.
Partner: UNT Libraries Government Documents Department

Wavelet-based acoustic recognition of aircraft

Description: We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.
Date: September 1, 1994
Creator: Dress, W. B. & Kercel, S. W.
Partner: UNT Libraries Government Documents Department

Context-Dependent Prognostics and Health Assessment: A Condition-Based Maintenance Approach That Supports Mission Compliance

Description: In today's manufacturing environment, plants, systems, and equipment are being asked to perform at levels not thought possible a decade ago. The intent is to improve process operations and equipment reliability, availability, and maintainability without costly upgrades. Of course these gains must be achieved without impacting operational performance. Downsizing is also taking its toll on operations. Loss of personnel, particularly those who represent the corporate history, is depleting US industries of their valuable experiential base which has been relied on so heavily in the past. These realizations are causing companies to rethink their condition-based maintenance policies by moving away from reacting to equipment problems to taking a proactive approach by anticipating needs based on market and customer requirements. This paper describes a different approach to condition-based maintenance-context-dependent prognostics and health assessment. This diagnostic capability is developed around a context-dependent model that provides a capability to anticipate impending failures and determine machine performance over a protracted period of time. This prognostic capability links operational requirements to an economic performance model. In this context, a system may provide 100% operability with less than 100% functionality. This paradigm is used to facilitate optimal logistic supply and support.
Date: April 19, 1999
Creator: Allgood, G.O. & Kercel, S.W.
Partner: UNT Libraries Government Documents Department

Susceptibility of digital instrumentation and control systems to disruption by electromagnetic interference

Description: The potential for disruption of safety-related digital instrumentation and control (I and C) systems by electromagnetic interference/radio-frequency interface (EMI/RFI) bears directly on the safe operation of advanced reactors. It is anticipated that the use of digital I and C equipment for safety and control functions will be substantially greater for advanced reactor designs than for current-generation nuclear reactors, which primarily use analog I and C equipment. In the absence of significant operational experience, the best available indication of the potential vulnerability of advanced digital safety systems to EMI/RFI comes from environmental testing of an experimental digital safety channel (EDSC) by the Oak Ridge National Laboratory (ORNL). The EDSC is a prototypical system representative of advanced reactor safety system designs with regard to architecture, functionality and communication protocols, and board and component fabrication technologies. An understanding of the electromagnetic environment to be expected for advanced reactors can be drawn from ORNL`s survey of ambient EMI/RFI conditions in the current generation of nuclear power plants. A summary of the results from these research efforts is reported in this paper. The lessons learned from the EMI/RFI survey and the EDSC tests contribute significantly to determining the best approach to assuring electromagnetic compatibility for the safety-related I and C systems of advanced reactors.
Date: October 1, 1997
Creator: Kercel, S.W.; Korsah, K. & Wood, R.T.
Partner: UNT Libraries Government Documents Department

Acoustic resonance for nonmetallic mine detection

Description: The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.
Date: April 1, 1998
Creator: Kercel, S. W.
Partner: UNT Libraries Government Documents Department

Electromagnetic Compatibility in Nuclear Power Plants

Description: Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.
Date: August 29, 1999
Creator: Ewing, P.D.; Kercel, S.W.; Korsah, K. & Wood, R.T.
Partner: UNT Libraries Government Documents Department

Developing a CD-CBM Anticipatory Approach for Cavitation - Defining a Model-Based Descriptor Consistent Across Processes, Phase 1 Final Report Context-Dependent Prognostics and Health Assessment: A New Paradigm for Condition-based Maintenance SBIR Topic No. N98-114

Description: The objective of this research, and subsequent testing, was to identify specific features of cavitation that could be used as a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor is based on the physics of the phenomena, capturing the salient features of the process dynamics. The test methodology and approach were developed to make the cavitation features the dominant effect in the process and collected signatures. This would allow the accurate characterization of the salient cavitation features at different operational states. By developing such an abstraction, these attributes can be used as a general diagnostic for a system or any of its components. In this study, the particular focus will be pumps. As many as 90% of pump failures are catastrophic. They seem to be operating normally and fail abruptly without warning. This is true whether the failure is sudden hardware damage requiring repair, such as a gasket failure, or a transition into an undesired operating mode, such as cavitation. This means that conventional diagnostic methods fail to predict 90% of incipient failures and that in addressing this problem, model-based methods can add value where it is actually needed.
Date: June 1, 1999
Creator: Allgood, G. O.; Dress, W. B. & Kercel, S. W.
Partner: UNT Libraries Government Documents Department

Humanitarian mine detection by acoustic resonance

Description: The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL ...
Date: March 1, 1998
Creator: Kercel, S.W.
Partner: UNT Libraries Government Documents Department

Comparison of enclosed space detection system with conventional methods

Description: Enclosed Space Detection System (ESDS) is a fast, inexpensive, and reliable device for detecting human occupants hidden in vehicles. Operation requires less than two minutes. ESDS is used to foil attempts at smuggling illegal aliens, terrorists, and escaping prisoners. It is being tested at nuclear weapons facilities and has been operated at several prisons and international border crossings. ESDS is the first practical electronic alternative to physical searches of vehicles for hidden passengers. At critical checkpoints, a thorough physical search of a single fully loaded truck requires a team of from two to six people, and may take as long as eight hours. Despite this level of security, experience has shown that the search can occasionally be foiled. Due to the enormous time and expense of thorough physical searches of vehicles, they are seldom conducted at any but the most critical of locations, simply leaving many sites vulnerable to crime and terrorism. Prior to the development of the ESDS, the only other effective alternative to physical search was the use of specially-trained canines, which can be vastly superior to the physical search in both time and accuracy. However, as discussed in this paper, canine inspection is not really a competitive substitute for ESDS because canine reliability (80% at most) is not as high as that of the ESDS (99%+), while the costs, training requirements, and operator skill needed are significantly higher with canines than with the ESDS. In addition, the ESDS has straightforward self-diagnostic tests to ensure the system is operating correctly; such tests are not currently available with either canine or human inspectors. ESDS offers an attractive supplement or alternative to meet current security requirements for vehicle searches at portals at government, nuclear, industrial, and other facilities where concealed persons may pose a threat either by entering or leaving.
Date: September 1, 1997
Creator: Kercel, S.W.; Baylor, V.M. & Labaj, L.E.
Partner: UNT Libraries Government Documents Department

Speaker Recognition Through NLP and CWT Modeling

Description: The objective of this research is to develop a system capable of identifying speakers on wiretaps from a large database (>500 speakers) with a short search time duration (<30 seconds), and with better than 90% accuracy. Much previous research in speaker recognition has led to algorithms that produced encouraging preliminary results, but were overwhelmed when applied to populations of more than a dozen or so different speakers. The authors are investigating a solution to the "large population" problem by seeking two completely different kinds of characterizing features. These features are he techniques of Neuro-Linguistic Programming (NLP) and the continuous wavelet transform (CWT). NLP extracts precise neurological, verbal and non-verbal information, and assimilates the information into useful patterns. These patterns are based on specific cues demonstrated by each individual, and provide ways of determining congruency between verbal and non-verbal cues. The primary NLP modalities are characterized through word spotting (or verbal predicates cues, e.g., see, sound, feel, etc.) while the secondary modalities would be characterized through the speech transcription used by the individual. This has the practical effect of reducing the size of the search space, and greatly speeding up the process of identifying an unknown speaker. The wavelet-based line of investigation concentrates on using vowel phonemes and non-verbal cues, such as tempo. The rationale for concentrating on vowels is there are a limited number of vowels phonemes, and at least one of them usually appears in even the shortest of speech segments. Using the fast, CWT algorithm, the details of both the formant frequency and the glottal excitation characteristics can be easily extracted from voice waveforms. The differences in the glottal excitation waveforms as well as the formant frequency are evident in the CWT output. More significantly, the CWT reveals significant detail of the glottal excitation waveform.
Date: June 16, 1999
Creator: Brown-VanHoozer, S.A.; Kercel, S.W. & Tucker, R.W.
Partner: UNT Libraries Government Documents Department

Developing a CD-CBM Anticipatory Approach for Cavitation - Defining a Model Descriptor Consistent Between Processes

Description: A major problem with cavitation in pumps and other hydraulic devices is that there is no effective method for detecting or predicting its inception. The traditional approach is to declare the pump in cavitation when the total head pressure drops by some arbitrary value (typically 3o/0) in response to a reduction in pump inlet pressure. However, the pump is already cavitating at this point. A method is needed in which cavitation events are captured as they occur and characterized by their process dynamics. The object of this research was to identify specific features of cavitation that could be used as a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor was based on the physics of the phenomena, capturing the salient features of the process dynamics. An important element of this concept is the development and formulation of the extended process feature vector @) or model vector. Thk model-based descriptor encodes the specific information that describes the phenomena and its dynamics and is formulated as a data structure consisting of several elements. The first is a descriptive model abstracting the phenomena. The second is the parameter list associated with the functional model. The third is a figure of merit, a single number between [0,1] representing a confidence factor that the functional model and parameter list actually describes the observed data. Using this as a basis and applying it to the cavitation problem, any given location in a flow loop will have this data structure, differing in value but not content. The extended process feature vector is formulated as follows: E`> [ <f(x,t,)>, {parameter Iist}, confidence factor]. (1) For this study, the model that characterized cavitation was a chirped-exponentially decaying sinusoid. Using the parameters defined by this model, the parameter list included frequency, decay, ...
Date: May 10, 1999
Creator: Allgood, G. O.; Dress, W. B. & Kercel, S. W.
Partner: UNT Libraries Government Documents Department

Speaker recognition through NLP and CWT modeling.

Description: The objective of this research is to develop a system capable of identifying speakers on wiretaps from a large database (&gt;500 speakers) with a short search time duration (&lt;30 seconds), and with better than 90% accuracy. Much previous research in speaker recognition has led to algorithms that produced encouraging preliminary results, but were overwhelmed when applied to populations of more than a dozen or so different speakers. The authors are investigating a solution to the ''huge population'' problem by seeking two completely different kinds of characterizing features. These features are extracted using the techniques of Neuro-Linguistic Programming (NLP) and the continuous wavelet transform (CWT). NLP extracts precise neurological, verbal and non-verbal information, and assimilates the information into useful patterns. These patterns are based on specific cues demonstrated by each individual, and provide ways of determining congruency between verbal and non-verbal cues. The primary NLP modalities are characterized through word spotting (or verbal predicates cues, e.g., see, sound, feel, etc.) while the secondary modalities would be characterized through the speech transcription used by the individual. This has the practical effect of reducing the size of the search space, and greatly speeding up the process of identifying an unknown speaker. The wavelet-based line of investigation concentrates on using vowel phonemes and non-verbal cues, such as tempo. The rationale for concentrating on vowels is there are a limited number of vowels phonemes, and at least one of them usually appears in even the shortest of speech segments. Using the fast, CWT algorithm, the details of both the formant frequency and the glottal excitation characteristics can be easily extracted from voice waveforms. The differences in the glottal excitation waveforms as well as the formant frequency are evident in the CWT output. More significantly, the CWT reveals significant detail of the glottal excitation waveform.
Date: June 23, 1999
Creator: Brown-VanHoozer, A.; Kercel, S. W. & Tucker, R. W.
Partner: UNT Libraries Government Documents Department

Anticipatory precrash restraint sensor feasibility study: Final report

Description: This report explores feasibility of an anticipatory precrash restraint sensor. The foundation principle is the anticipation mechanism found at a primitive level of biological intelligence and originally formalized by the mathematical biologist Robert Rosen. A system based on formal anticipatory principles should significantly outperform conventional technologies. It offers the prospect of high payoff in prevention of death and injury. Sensors and processes are available to provide a good, fast, and inexpensive description of the present dynamical state of the vehicle to the embedded system model in the anticipation engine. The experimental part of this study found that inexpensive radar in a real-world setting does return useful data on target dynamics. The data produced by a radar system can be converted to target dynamical information by good, fast and inexpensive signal-processing techniques. Not only is the anticipatory sensor feasible, but further development under the sponsorship of the National Highway Traffic Safety Administration is necessary and desirable. There are a number of possible lines of follow-on investigation. The level of effort and expected benefits of various alternatives are discussed.
Date: August 1, 1995
Creator: Kercel, S.W. & Dress, W.B.
Partner: UNT Libraries Government Documents Department

A hardware implementation of multiresolution filtering for broadband instrumentation

Description: The authors have constructed a wavelet processing board that implements a 14-level wavelet transform. The board uses a high-speed, analog-to-digital (A/D) converter, a hardware queue, and five fixed-point digital signal processing (DSP) chips in a parallel pipeline architecture. All five processors are independently programmable. The board is designed as a general purpose engine for instrumentation applications requiring near real-time wavelet processing or multiscale filtering. The present application is the processing engine of a magnetic field monitor that covers 305 Hz through 5 MHz. The monitor is used for the detection of peak values of magnetic fields in nuclear power plants. This paper describes the design, development, simulation, and testing of the system. Specific issues include the conditioning of real-world signals for wavelet processing, practical trade-offs between queue length and filter length, selection of filter coefficients, simulation of a 14-octave filter bank, and limitations imposed by a fixed-point processor. Test results from the completed wavelet board are included.
Date: December 1995
Creator: Kercel, S. W. & Dress, W. B.
Partner: UNT Libraries Government Documents Department

Concept definition of traffic flow wide-area surveillance

Description: Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret large spatial projections of data originating from multiple sensor suites. The intent of the Wide-Area Surveillance (WAS) Project is to build upon this concept and define the operational specifications and characteristics of a Traffic Flow Wide-Area Surveillance (TFWAS) system in terms of traffic management and control. In doing so, the functional capabilities of a TFWAS will be mapped onto an operational profile that is consistent with the Federal Highway Administration`s Intelligent Vehicle Highway System. This document provides the underlying foundation of this work by offering a concept definition for the TFWAS system. It concentrates on answering the question: ``What is the system?`` In doing so, the report develops a hierarchy of specialized definitions.
Date: July 1, 1994
Creator: Allgood, G. O.; Ferrell, R. K. & Kercel, S. W.
Partner: UNT Libraries Government Documents Department

An optical technique for characterizing the liquid phase of steam at the exhaust of an LP turbine

Description: Optical observation of velocity and size of water droplets in powerplant steam has several applications. These include the determination of steam wetness fraction, mass flow rate, and predicting erosion of turbine blades and pipe elbows. The major advantages of optical techniques are that they do not interfere with the flow or perturb the observation. This paper describes the measurement of the size and velocity of particles based on the observation and analysis of visibility patterns created by backscattered circularly polarized light. The size of latex particles in a dry nitrogen stream was measured in the laboratory. Visibility patterns of water droplets were observed in the low pressure turbine of Unit 6 of Alabama Power`s Gorgas Steam Plant.
Date: June 1, 1993
Creator: Kercel, S. W.; Simpson, M. L.; Azar, M. & Young, M.
Partner: UNT Libraries Government Documents Department

Can Cavitation Be Anticipated?

Description: The major problem with cavitation in pumps and hydraulic systems is that there is no effective (conventional) method for detecting or predicting its inception. The traditional method of recognizing cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value (typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already seriously cavitating when this happens. What is actually needed is a practical method to detect impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the detection of features just after cavitation starts, the anticipation of cavitation requires the detection and identification of precursor features just before it begins. Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of 1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to coarse vibrations. The second is the application of Bayesian parameter estimation which makes it possible to separate weak signals, such as those present in cavitation precursors, from strong signals, such as pump vibration. Bayesian parameter estimation derives a model based on cavitation hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs. This paper reports the findings of precursor features using high-performance sensors and Bayesian analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.
Date: April 25, 1999
Creator: Allgood, G.O.; Dress, W.B.; Hylton, J.O. & Kercel, S.W.
Partner: UNT Libraries Government Documents Department

An Anticipatory Model of Cavitation

Description: The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.
Date: April 5, 1999
Creator: Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O. & Kercel, S.W.
Partner: UNT Libraries Government Documents Department

Traffic Flow Wide-Area Surveillance system

Description: Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.
Date: September 1, 1994
Creator: Allgood, G. O.; Ferrell, R. K.; Kercel, S. W. & Abston, R. A.
Partner: UNT Libraries Government Documents Department