10 Matching Results

Search Results

Advanced search parameters have been applied.

Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

Description: The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.
Date: November 4, 2005
Creator: Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T & Horz, F
Partner: UNT Libraries Government Documents Department

Rapid Extraction of Dust Impact Tracks from Silica Aerogel by Ultrasonic Micro-blades

Description: In January 2006, NASA's Stardust Mission will return with its valuable cargo of cometary dust particles, the first brought back to Earth, captured at hypervelocity speeds in silica aerogel collectors. Aerogel, a proven capture medium, is also a candidate for future sample return missions and low-earth orbit (LEO) deployments. Critical to the science return of Stardust and future missions using aerogel is the ability to efficiently extract impacted particles from collector tiles. Researchers will be eager to obtain Stardust samples as quickly as possible, and tools for the rapid extraction of particle impact tracks that require little construction, training, or investment would be an attractive asset. To this end, we have experimented with diamond and steel micro-blades. Applying ultrasonic frequency oscillations to these micro-blades via a piezo-driven holder produces rapid, clean cuts in the aerogel with minimal damage to the surrounding collector tile. With this approach, impact tracks in aerogel fragments with low-roughness cut surfaces have been extracted from aerogel tiles flown on NASA's Orbital Debris Collector Experiment. The smooth surfaces produced during cutting reduce imaging artifacts during analysis by SEM. Some tracks have been dissected to expose the main cavity for eventual isolation of individual impact debris particles and further analysis by techniques such as TEM and nanoSIMS.
Date: February 17, 2005
Creator: Ishii, H; Graham, G; Kearsley, A T; Grant, P G; Snead, C J & Bradley, J P
Partner: UNT Libraries Government Documents Department

Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

Description: New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.
Date: December 10, 2009
Creator: Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J et al.
Partner: UNT Libraries Government Documents Department

Applied Focused Ion Beam Techniques for Sample Preparation of Astromaterials for Integrated Nano-Analysis

Description: Sample preparation is always a critical step in study of micrometer sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle, as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic and spectroscopic information extracted from one individual particle. In addition, focused ion beam techniques have been employed to extract cometary residue preserved on the rims and walls of micro-craters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non-ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.
Date: February 20, 2007
Creator: Graham, G A; Teslich, N E; Kearsley, A T; Stadermann, F J; Stroud, R M; Dai, Z R et al.
Partner: UNT Libraries Government Documents Department

Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

Description: The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.
Date: October 19, 2006
Creator: Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N et al.
Partner: UNT Libraries Government Documents Department

Discovery of Non-random Spatial Distribution of Impacts in the Stardust Cometary Collector

Description: We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than {approx} 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
Date: April 6, 2007
Creator: Westphal, A J; Bastien, R K; Borg, J; Bridges, J; Brownlee, D E; Burchell, M J et al.
Partner: UNT Libraries Government Documents Department

Light element isotopic compositions of cometary matter returned by the STARDUST mission

Description: Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.
Date: October 10, 2006
Creator: McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A et al.
Partner: UNT Libraries Government Documents Department

Mineralogy and Petrology of Comet Wild 2 Nucleus Samples

Description: The bulk of the Wild 2 samples appear to be weakly-constructed mixtures of nanometerscale grains with occasional much larger (>1{micro}m) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in Wild 2 require a wide range of formation conditions, probably reflecting different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and absence of hydrous phases indicate that Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require large-scale radial transport in the early protoplanetary disk. The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Until now we have had to study comets from afar using spectroscopy, or settle for analyses of interplanetary dust particles (IDPs) of uncertain provenance. We report here mineralogical and petrographic analyses of particles derived directly from Comet Wild 2. All of the Wild 2 particles we have thus far examined have been modified in various ways by the capture process. All particles that may have been loose aggregates, ''traveling sand piles'', disaggregated into individual components with the larger, denser components penetrating more deeply into the aerogel. Individual grains experienced a wide range of heating effects that range from excellent preservation to melting (Fig. 1); such behavior was expected (1, 2 ,3). What is remarkable is the extreme variability of these modifications and the fact that severely modified and unmodified materials can be found within a micrometer of each other, requiring tremendous local temperature gradients. Fortunately, we have an internal gauge of impact collection heating. Fe-Ni sulfides are ubiquitous in the Wild 2 samples, are very sensitive indicators of heating, and accurate chemical analyses ...
Date: October 11, 2006
Creator: Zolensky, M E; Zega, T J; Yano, H; Wirick, S; Westphal, A J; Weisberg, M K et al.
Partner: UNT Libraries Government Documents Department

Comet 81P/Wild 2 under a microscope

Description: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual ...
Date: October 12, 2006
Creator: Brownlee, D; Tsou, P; Aleon, J; Alexander, C; Araki, T; Bajt, S et al.
Partner: UNT Libraries Government Documents Department