8 Matching Results

Search Results

Advanced search parameters have been applied.

Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

Description: The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was ...
Date: September 30, 2011
Creator: Kass, M. & Veliz, M. (Caterpillar, Inc.)
Partner: UNT Libraries Government Documents Department

Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

Description: The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project ...
Date: July 15, 2008
Creator: Kass, M.D.
Partner: UNT Libraries Government Documents Department

PMB-Waste: An analysis of fluidized bed thermal treatment

Description: A fluidized bed treatment process was evaluated for solid waste from plastic media blasting of aircraft protective coating. The treatment objective is to decompose and oxidize all organic components, and concentrate all the hazardous metals in the ash. The reduced volume and mass are expected to reduce disposal cost. A pilot test treatment was done in an existing fluidized bed equipped with emissions monitors, and emissions within regulatory requirements were demonstrated. A economic analysis of the process is inconclusive due to lack of reliable cost data of disposal without thermal treatment.
Date: July 1, 1995
Creator: Gat, U.; Kass, M.D. & Lloyd, D.B.
Partner: UNT Libraries Government Documents Department

Microwave versus conventional sintering of silicon carbide tiles

Description: Silicon carbide is being evaluated as an armor material because of its lightweight, high-hardness, and excellent armor efficiency. However, one of the problems associated with silicon carbide is the high cost associated with achieving fully dense tiles. Full density requires either hot pressing and sintering or reaction bonding. Past efforts have shown that hot pressed tiles have a higher armor efficiency than those produced by reaction bonded sintering. An earlier stuy showed that the acoustic properties of fully-dense silicon carbide tiles were enhanced through the use of post-sintered microwave heat treatments. One of the least expensive forming techniques is to isostatically press-and-sinter. In this study, the authors have used microwave energy to densify silicon carbide green bodies. Microwave sintering has been demonstrated to be a very quick way to sinter ceramics such as alumina to exceptionally high densities. Previous work has shown that microwave post treatment of fully-dense reaction bonded silicon carbide tiles significantly improves the acoustic properties of the tiles. These properties include Poisson`s ratio, Young`s modulus, shear modulus, and bulk modulus.
Date: May 7, 1997
Creator: Kass, M. D.; Caughman, J. B. O.; Forrester, S. C. & Akerman, A.
Partner: UNT Libraries Government Documents Department

Evaluation of Demo 1C composite flywheel rotor burst test and containment design

Description: Laboratory-Directed funds were provided in FY 1995 for research to develop flywheel containment specifications and to consider concepts that could satisfy these specifications and produce a prototype small, lightweight, inexpensive, mobile flywheel containment. Research activities have included an analytical and pictorial review of the Demo 1C flywheel failure test, which provided significant insight about radial and axial failure modes; calculations of the thickness of ultra-conservative pressure vessel containment; entertainment of advanced containment concepts using lightweight materials and armor literature; consideration of fabrication assembly procedures; and participation in a Flywheel Energy Storage Workshop during which additional flywheel failure experiences were discussed. Based on these activities, calculations, and results, a list of conclusions concerning flywheel containment and its relation to the flywheel are presented followed by recommendations for further research.
Date: July 1, 1998
Creator: Kass, M.D.; McKeever, J.W.; Akerman, M.A.; Goranson, P.L.; Litherland, P.S. & O`Kain, D.U.
Partner: UNT Libraries Government Documents Department

Sintering of ceramics using low frequency rf power

Description: Sintering with low frequency rf power ({approximately}50 MHz) is a new technique with unique capabilities that has been used to sinter a variety of ceramic materials, including zirconia-toughened alumina, alumina, silicon carbide, and boron carbide. Processing with low frequencies offers many advantages compared to processing with conventional microwave frequencies (915 MHz and 2.45 GHz). Because of the longer wavelength, the rf electric field penetrates materials more than microwaves. This effect allows the processing of a wider variety of materials and allows for an increase in the physical size of the material being processed. In addition, the material is heated in a single mode cavity with a uniform electric field, which reduces the occurrence of hot-spot generation and thermal runaway effects. This technique has been used to sinter large crack-free alumina samples (3 inch square) to > 97% density. The sintering and/or annealing of a number of carbide materials has been demonstrated as well, including silicon carbide, boron carbide, tungsten carbide, and titanium carbide.
Date: July 1, 1995
Creator: Caughman, J.B.O.; Hoffman, D.J.; Baity, F.W.; Akerman, M.A.; Forrester, S.C. & Kass, M.D.
Partner: UNT Libraries Government Documents Department

Selective Catalytic Reduction of Diesel Engine Nox Emissions Using Ethanol as a Reductant

Description: NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Date: August 24, 2003
Creator: Kass, M. D.; Thomas, J. F.; Lewis, S. A., Sr.; Storey, J. M.; Domingo, N. & Graves, R. L.
Partner: UNT Libraries Government Documents Department

Microwave processing of silicon carbide

Description: Reaction-bonded silicon carbide ({alpha}-SiC) armor tiles were annealed at 2100{degree}C using microwave radiation at 2.45 GHz. Ultrasonic velocity measurements showed that the longitudinal and shear velocities, acoustic impedances, and acoustic moduli of the post-annealed tiles were statistically higher than for the unannealed tiles. However, the exposed surfaces of the annealed tiles experienced slight degradation, which was attributed to the high annealing temperatures.
Date: December 31, 1994
Creator: Akerman, M.A.; Baity, F.W. Jr.; Caughman, J.B.; Forrester, S.C.; Kass, M.D.; Morrow, M.S. et al.
Partner: UNT Libraries Government Documents Department