4 Matching Results

Search Results

Advanced search parameters have been applied.

Shift Dependent Skew Quadrupole in Advanced Light SourceElliptically Polarizing Undulators, Cause and Corrections

Description: Three elliptically polarizing undulators (EPU) are installed and operational at the Advanced Light Source (ALS); the most recent was installed in April 2005. Operational experience has shown a variation in electron beam size which correlates with the EPU's magnetic quadrant shifts used to vary polarization. Storage ring electron dynamics studies pointed to the existence of a shift dependent skew quadrupole (SQ) component generated within the EPUs. Detailed magnetic and mechanical measurements demonstrated that the field errors were the result of systematic individual magnetic block displacements which vary with quadrant shift. This paper will discuss the results of electron dynamics studies, magnetic and mechanical measurements, design modifications planned for future EPUs to eliminate the SQ source, and the design and implementation of SQ compensation coils.
Date: November 29, 2005
Creator: Marks, Steve; Prestemon, Soren; Robin, David; Schlueter, Ross D.; Steier, Christoph; Wolski, Andrew et al.
Partner: UNT Libraries Government Documents Department

New chicane magnet design for insertion device straights at the Advanced Light Source

Description: A chicane magnet incorporating counter-rotating permanent magnet pairs together with trim coils has been designed for use in the Advanced Light Source (ALS) straights in conjunction with two insertion devices. In particular, this design is being developed for use in the existing beam line (BL) 4 elliptically polarizing undulator (EPU) straight and in the BL11 EPU straight, currently under design and construction. The purpose of the chicane is to provide a fixed angular separation between two successive EPU photon fans, and to correct steering perturbations resulting from EPU polarization state changes. Polarization changes occur on the time scale of one second; associated steering corrections must be accomplished in less than a second. Hysteresis associated with conventional iron core electromagnets prevents fast steering correction to the required precision. This consideration motivated the iron-free design presented here.
Date: December 10, 2001
Creator: Marks, Steve; Schlueter, Ross; Anderson, David; Gath, William; Jung, Jin-Young; Robin, David et al.
Partner: UNT Libraries Government Documents Department

Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

Description: Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the compelling scientific opportunities for research ...
Date: March 23, 2009
Creator: Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill et al.
Partner: UNT Libraries Government Documents Department

CIRCE, the Coherent Infrared Center at the ALS

Description: CIRCE (Coherent InfraRed CEnter) is a proposal for a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. Among others, CIRCE operation includes three interesting CSR modes: ultra stable, femtosecond laser slicing and broadband bursting. CSR allows CIRCE to generate an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity over that presently achievable by conventional sources, has the potential to enable new science experiments. The characteristics of CIRCE and of the different modes of operation are described in this paper.
Date: June 29, 2004
Creator: Byrd, John M.; De Santis, Stefano; Jung, Jin-Young; Li, Derun; Martin, Michael C.; McKinney, W. et al.
Partner: UNT Libraries Government Documents Department