41 Matching Results

Search Results

Advanced search parameters have been applied.

Long-term glazing performance

Description: A survey of glazing materials is presented and initial (nondegraded) properties are compared. Weathering characteristics are discussed in terms of mechanisms and their effects upon candidate glazings. Examples of failure modes are given for various commercially available materials. A specific process, optical degradation, was studied in detail to determine how loss of solar transmission affects the thermal performance of flat-plate solar energy collection systems. Computer simulations of singly and doubly glazed collectors having cover plates of various commercially available transparent materials were made for one-week time periods using Phoenix, Ariz., insolation and meteorological data. Optical degradation was modeled by systematically decreasing the specified values of solar transmittances of the plastic cover plates under consideration. Energy collection efficiencies corresponding to each decrement of transmittance were normalized to that of nondegraded glass to allow comparisons both with a standard and among the different plastics. This provides a measure of the relative usefulness of various candidate polymeric glazing materials when realistic rates of optical degradation are known.
Date: January 1, 1979
Creator: Jorgensen, G.J.
Partner: UNT Libraries Government Documents Department

Uniform flux dish concentrators for photovoltaic application

Description: Researchers at the National Renewable Energy Laboratory (NREL) have designed a unique and innovative molded dish concentrator capable of producing a uniform flux profile on a flat target plane. Concentration levels of 100--200 suns, which are uniform over an area of several square inches, can be directly achieved for collection apertures of a reasonable size ({approximately}1.5-m diameter). Such performance would be immediately applicable to photovoltaic (PV) use. Economic concerns have shown that the proposed approach would be less expensive thatn Fresnel lens concepts or other dish concentrator designs that require complicated and costly receivers to mix the flux to obtain a uniform distribution. 12 refs.
Date: May 1, 1992
Creator: Jorgensen, G & Wendelin, T
Partner: UNT Libraries Government Documents Department

Comparison of predicted optical performance with measured results for dish concentrators

Description: Several optical design tools have been developed at the National Renewable Energy Laboratory (NREL) during the past two years. These have been used extensively both in-house and by industry to analyze dish concentrator systems and to optimize performance of such designs. The first program, OPTDSH, models single-element dish concentrators. The second code, ODMF, allows multifacet dish arrays to be modeled. The accuracy of performance simulations by these programs has been established by comparing predicted results with measured on-sun data. ODMF evolved from NREL's High-Flux Solar Furnace (HFSF) design tool, SOLFUR, and in fact is a special case of SOLFUR in which the primary facet array is on sun.'' Consequently, confirmation of the accuracy of SOLFUR would verify the results from ODMF as well. Furthermore, because OPTDSH can be viewed as a single-facet case of ODMF, determination of the precision of SOLFUR/ODMF would also substantiate OPTDSH. Thus, the approach to verifying the correctness of all three codes was to compare flux patterns as predicted by SOLFUR with those actually measured at NREL's HFSF. Measured vs. calculated data have been compared on the basis of flux distribution (in terms of contour plots) and peak flux for both single-facet and multiple-facet cases. Agreement in measured vs. predicted peak flux values has been obtained within the uncertainty associated with the measurement/calibration process. Excellent agreement has also been demonstrated by comparing contour maps of measured vs. computed flux levels. 7 refs.
Date: April 1, 1991
Creator: Jorgensen, G.
Partner: UNT Libraries Government Documents Department

Reflective coatings for solar applications

Description: Many applications of solar energy require large mirrors to provide high levels of concentrated sunlight. The success of such conversion systems hinges on the optical durability and economic viability of the reflector materials. A major effort at the National Renewable Energy Laboratory (NREL) has been to improve the existing reflector materials technology and to identify candidates that retain optical performance and durability criteria and offer potential for reduced cost. To attain the goals, it is desirable to maintain and increase the involvement of industrial organizations in reflective materials R D related to the conversion of solar resources to useful energy. Toward this end, NREL has recently initiated several collaborative efforts with industry to develop advanced reflector materials.
Date: May 1, 1993
Creator: Jorgensen, G.
Partner: UNT Libraries Government Documents Department

Adhesion and Thin-Film Module Reliability: Preprint

Description: Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90{sup o} or 180{sup o} and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are << 1 N/mm. This is far below the normal Instron mechanical testing unit Instron mechanical testing unit; glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.
Date: May 1, 2006
Creator: McMahon, T. J. & Jorgensen, G. J.
Partner: UNT Libraries Government Documents Department

Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL

Description: Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.
Date: November 1, 2005
Creator: Pern, F. J. & Jorgensen, G. J.
Partner: UNT Libraries Government Documents Department

Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

Description: Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.
Date: October 1, 2010
Creator: Jorgensen, G.; Gee, R. & DiGrazia, M.
Partner: UNT Libraries Government Documents Department

Ultraviolet reflector materials for solar detoxification of hazardous waste

Description: Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.
Date: July 1, 1991
Creator: Jorgensen, G. & Govindarajan, R.
Partner: UNT Libraries Government Documents Department

State-of-the-art low-cost solar reflector materials

Description: Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.
Date: November 1, 1994
Creator: Kennedy, C & Jorgensen, G
Partner: UNT Libraries Government Documents Department

Accelerated Life Testing and Service Lifetime Prediction for PV Technologies in the Twenty-First Century

Description: The purposes of this paper are to (1) discuss the necessity for conducting accelerated life testing (ALT) in the early stages of developing new photovoltaic (PV) technologies, (2) elucidate the crucial importance for combining ALT with real-time testing (RTT) in terrestrial environments for promising PV technologies for the 21st century, and (3) outline the essential steps for making a service lifetime prediction (SLP) for any PV technology. The specific objectives are to (a) illustrate the essential need for ALT of complete, encapsulated multilayer PV devices, (b) indicate the typical causes of degradation in PV stacks, (c) elucidate the complexity associated with quantifying the durability of the devices, (d) explain the major elements that constitute a generic SLP methodology, (e) show how the introduction of the SLP methodology in the early stages of new device development can reduce the cost of technology development, and (f) outline the procedure for combining the results of ALT and RTT, establishing degradation mechanisms, using sufficient numbers of samples, and applying the SLP methodology to produce a SLP for existing or new PV technologies.
Date: July 13, 1999
Creator: Czanderna, A. W. & Jorgensen, G. J.
Partner: UNT Libraries Government Documents Department

Determination of accuracy of measurements by NREL's Scanning Hartmann Optical Test instrument

Description: NREL's Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.
Date: April 1, 1991
Creator: Jorgensen, G.; Wendelin, T. & Carasso, M.
Partner: UNT Libraries Government Documents Department

Application experience and field performance of silvered polymer reflectors

Description: The solar-weighted hemispheric reflectance of unweathered silvered acrylic mirrors exceeds 92%, and specular reflectance into a 4- milliradian, full-cone acceptance angle is greater than 90%. Comparison of outdoor and accelerated tests suggests that the protected silver can resist corrosion for the five-year life that is the current goal. An installation of parabolic troughs has been cleaned monthly for two years, and reflectance is regularly returned to within a few percent of the initial reflectance values. In the presence of moisture, the silver/acrylic bond can delaminate to form a maze of tunnels and destroy specular reflectance. Proper edge preparation and protection delay the initiation of tunnels. 6 refs.
Date: April 1, 1991
Creator: Schissel, P.; Jorgensen, G. & Pitts, R.
Partner: UNT Libraries Government Documents Department

An outdoor exposure testing program for optical materials used in solar thermal electric technologies

Description: Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.
Date: January 1, 1994
Creator: Wendelin, T. & Jorgensen, G.
Partner: UNT Libraries Government Documents Department

Assess the Efficacy of an Aerial Distant Observer Tool Capable of Rapid Analysis of Large Sections of Collector Fields: FY 2008 CSP Milestone Report, September 2008

Description: We assessed the feasibility of developing an aerial Distant Observer optical characterization tool for collector fields in concentrating solar power plants.
Date: February 1, 2009
Creator: Jorgensen, G.; Burkholder, F.; Gray, A. & Wendelin, T.
Partner: UNT Libraries Government Documents Department

Corrosion Protection Provided by PV Module Packaging Materials

Description: The ability of glass/glass and glass/breathable backsheet constructions laminated with various encapsulant and/or edge seal materials to protect thin-film aluminum coatings deposited onto glass substrates was assessed. Although they provide the best moisture barrier available, glass/glass laminate constructions can trap harmful compounds that catalyze moisture-driven corrosion of the aluminum. Constructions with breathable backsheets allow higher rates of moisture ingress, but also allow egress of deleterious substances that can result in decreased corrosion.
Date: November 1, 2005
Creator: Jorgensen, G. J.; Kempe, M. D.; Terwilliger, K. M. & McMahon, T. J.
Partner: UNT Libraries Government Documents Department

Durability of Polymeric Glazing and Absorber Materials

Description: The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.
Date: November 1, 2005
Creator: Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C. & Milbourne, M.
Partner: UNT Libraries Government Documents Department

Durability testing of antireflection coatings for solar applications

Description: Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending on their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency (IEA) Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4%--5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5%--0.7% at selected wavelengths (680--720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600--700 nm). Accelerated testing at measured levels of simulated solar irradiance and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.
Date: January 5, 2000
Creator: Jorgensen, G.; Brunold, S.; Koehl, M.; Nostell, P.; Roos, A. & Oversloot, H.
Partner: UNT Libraries Government Documents Department

Optical durability testing of candidate solar mirrors

Description: Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the Concentrated Solar Power (CSP) Program. Outdoor exposure testing (OET) at up to eight outdoor, worldwide exposure sites has been underway for several years. This includes collaboration under the auspices of the International Energy Agency (IEA) Solar Power and Chemical Energy Systems (SolarPACES) agreement. Outdoor sites are fully instrumented in terms of monitoring meteorological conditions and solar irradiance. Candidate materials are optically characterized prior to being subjected to exposure in real and simulated weathering environments. Optical durability is quantified by periodically re-measuring hemispherical and specular reflectance as a function of exposure time. By closely monitoring the site- and time-dependent environmental stress conditions experienced by the material samples, site-dependent loss of performance may be quantified. In addition, accelerated exposure testing (AET) of these materials in parallel under laboratory-controlled conditions may permit correlating the outdoor results with AET, and subsequently predicting service lifetimes. Test results to date for a large number of candidate solar reflector materials are presented in this report. Acronyms are defined. Based upon OET and AET results to date, conclusions can be drawn about the optical durability of the candidate reflector materials. The optical durability of thin glass, thick glass, and two metallized polymers can be characterized as excellent. The all-polymeric construction, several of the aluminized reflectors, and a metallized polymer can be characterized as having intermediate durability and require further improvement, testing and evaluation, or both.
Date: March 24, 2000
Creator: Jorgensen, G.; Kennedy, C.; King, D. & Terwilliger, K.
Partner: UNT Libraries Government Documents Department

Low-Cost Solar Domestic Hot Water Systems for Mild Climates

Description: In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.
Date: January 1, 2005
Creator: Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R. & Jorgensen, G.
Partner: UNT Libraries Government Documents Department

Durability of Polymeric Glazing and Absorber Materials

Description: The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.
Date: January 1, 2005
Creator: Jorgensen, G.; Terwilliger, K.; Bingham, C. & Milbourne, M.
Partner: UNT Libraries Government Documents Department

Improved tunnel resistance of silvered-polymer mirrors

Description: This report documents the research performed at the Solar Energy Research Institute during fiscal year (FY) 1991 to develop ways to prevent delamination failure (known as tunneling) of silvered-polymer reflector materials. Several promising approaches have been identified and demonstrated that substantially reduce such failures. These approaches include (1) use of Tedlar edge tape rather than the manufacturer-recommended ECP-244 tape, (2) thermal treatment of laminated reflector/substrate constructions, and (3) application of silver to the polymer film through an alternative deposition process. Approaches 1 and 2 offer readily available engineering solutions to the delamination problem. Approaches 2 and 3 provide tunnel resistance over the entire surface of the reflector material, including the edges. Tedlar (a polyvinyl fluoride from DuPont) tape is an opaque white tape available in different widths from 3M Company. The base material has demonstrated outstanding outdoor durability. Thermal treatment of ECP-305 laminated to substrate materials has demonstrated outstanding resistance to tunneling. Alternative silver deposition techniques such as sputtering (rather than thermal evaporation) offer increased resistance to tunneling. 15 refs., 10 figs.
Date: October 1, 1991
Creator: Jorgensen, G.; Schissel, P.; Kennedy, C.; Shinton, Y.; Powell, D. & Siebarth, J.
Partner: UNT Libraries Government Documents Department

Outdoor testing of advanced optical materials for solar thermal electric applications

Description: The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.
Date: May 1, 1992
Creator: Wendelin, T.J.; Jorgensen, G. & Goggin, R.M.
Partner: UNT Libraries Government Documents Department

Simulations and economic analyses of desiccant cooling systems

Description: The progress to date in the development and analysis of computer simulations of solar-powered desiccant cooling using an axial-flow disc-type dehumidifier wheel, solar-powered space heating, and electrically driven, standard vapor-compression air-conditioning systems for residential use is documented. Computer simulations for both solar and conventional heating and cooling systems were performed for 12-month heating and cooling seasons. Annual thermal performance and the resulting life cycle costs for both types of systems were analyzed and compared. The heating/cooling season simulations were run for five U.S. cities representing a wide range of climatic conditions and insolation. With the informaion resulting from these simulations, the optimum air-conditioning system was chosen to maximize the conservation of fossil fuels and minimize operating costs. Because of the increasing use of residential air conditioning employing electrically driven vapor-compression coolers, the five locations were studied to determine if it would be beneficial (in terms of both economics and fossil fuel displacement) to displace fossil-fuel-powered vapor-compression coolers and natural gas space heaters with solar-powered heating and desiccant cooling systems.
Date: June 1, 1979
Creator: Shelpuk, B. C.; Hooker, D. W.; Jorgensen, G. J. & Bingham, C. E.
Partner: UNT Libraries Government Documents Department