23 Matching Results

Search Results

Advanced search parameters have been applied.

Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.
Date: December 1, 2009
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

Description: This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.
Date: December 1, 2009
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.
Date: January 1, 2010
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.
Date: September 1, 2010
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.
Date: May 1, 2010
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.
Date: July 1, 2010
Creator: Huskey, A.; Bowen, A. & Jager, D.
Partner: UNT Libraries Government Documents Department

Atmospheric performance of the special-purpose Solar Energy Research Institute (SERI) thin-airfoil family

Description: The Solar Energy Research Institute (SERI), in cooperation with SeaWest Energy Group, has completed extensive atmospheric testing of the special-purpose SERI thin-airfoil family during the 1990 wind season. The purpose of this test program was to experimentally verify the predicted performance characteristics of the thin-airfoil family on a geometrically optimized blade, and to compare it to original-equipment blades under atmospheric wind conditions. The tests were run on two identical Micon 65/13 horizontal-axis wind turbines installed side-by-side in a wind farm. The thin-airfoil family 7.96 m blades were installed on one turbine, and AeroStar 7.41 m blades were installed on the other. This paper presents final performance results of the side-by-side comparative field test for both clean and dirty blade conditions. 7 refs., 11 figs., 1 tab.
Date: September 1, 1990
Creator: Tangler, J; Smith, B; Jager, D & Olsen, T
Partner: UNT Libraries Government Documents Department

SERI advanced wind turbine blades

Description: The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.
Date: February 1, 1992
Creator: Tangler, J.; Smith, B. & Jager, D.
Partner: UNT Libraries Government Documents Department

SERI advanced wind turbine blades

Description: The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.
Date: February 1, 1992
Creator: Tangler, J.; Smith, B. & Jager, D.
Partner: UNT Libraries Government Documents Department

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

Description: This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.
Date: November 1, 2012
Creator: Smith, J.; Huskey, A.; Jager, D. & Hur, J.
Partner: UNT Libraries Government Documents Department

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine

Description: This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.
Date: May 1, 2010
Creator: van Dam, J.; Baker, D. & Jager, D.
Partner: UNT Libraries Government Documents Department

Duration Test Report for the Ventera VT10 Wind Turbine

Description: This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.
Date: June 1, 2013
Creator: Smith, J.; Huskey, A.; Jager, D. & Hur, J.
Partner: UNT Libraries Government Documents Department

Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

Description: This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.
Date: February 1, 2010
Creator: van Dam, J.; Baker, D. & Jager, D.
Partner: UNT Libraries Government Documents Department

Duration Test Report for the Entegrity EW50 Wind Turbine

Description: This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.
Date: December 1, 2012
Creator: Smith, J.; Huskey, A.; Jager, D. & Hur, J.
Partner: UNT Libraries Government Documents Department

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

Description: This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.
Date: November 1, 2012
Creator: Smith, J.; Huskey, A.; Jager, D. & Hur, J.
Partner: UNT Libraries Government Documents Department

Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns

Description: The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale three-dimensional aerodynamic behavior of horizontal axis wind turbines. To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic stall regimes. Much of the effort in the earlier phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phases II-IV of the experiment is contained in this report.
Date: August 19, 1999
Creator: Simms, D. A.; Hand, M. M.; Fingersh, L. J. & Jager, D. W.
Partner: UNT Libraries Government Documents Department

Measured and predicted rotor performance for the SERI advanced wind turbine blades

Description: Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.
Date: February 1, 1992
Creator: Tangler, J.; Smith, B.; Kelley, N. & Jager, D.
Partner: UNT Libraries Government Documents Department

Measured and predicted rotor performance for the SERI advanced wind turbine blades

Description: Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.
Date: February 1, 1992
Creator: Tangler, J.; Smith, B.; Kelley, N. & Jager, D.
Partner: UNT Libraries Government Documents Department

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

Description: Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.
Date: January 1, 2012
Creator: Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D. & Schreck, S.
Partner: UNT Libraries Government Documents Department

Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns

Description: The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic-stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report.
Date: August 30, 2001
Creator: Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W. & Cotrell, J. R.
Partner: UNT Libraries Government Documents Department

Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint

Description: In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.
Date: April 1, 2010
Creator: Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D. et al.
Partner: UNT Libraries Government Documents Department

Small Wind Turbine Testing Results from the National Renewable Energy Lab

Description: The independent testing project was established at the National Renewable Energy Laboratory to help reduce the barriers of wind energy expansion. Among these barriers is a lack of independent testing results for small turbines.
Date: July 1, 2009
Creator: Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D. et al.
Partner: UNT Libraries Government Documents Department