20 Matching Results

Search Results

Advanced search parameters have been applied.

Dynamic Testing of Gasifier Refractory

Description: As DOE continues to advance new power systems, materials issues are often pivotal in determining the ultimate efficiency that can be reached in the system. Refractory performance in slagging gasification represents one of these issues. The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The focus of the proposed work is to test the corrosion resistance of commercially available refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions studied. Corrosion is the degradation of material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and consequently a decrease in strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Once these are identified, methods for reducing corrosion rates can be developed. The work will take advantage of equipment and experimental techniques developed at the EERC under funding from several DOE programs. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) will be utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. To date, efforts have focused on final shakedown of the CADCAF and obtaining representative samples of slag and refractory for testing.
Date: September 27, 2002
Creator: Mann, Michael D. & Hurley, John P.
Partner: UNT Libraries Government Documents Department

IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

Description: The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of this project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.
Date: September 30, 2001
Creator: Hurley, John P. & Kleven, Patty L.
Partner: UNT Libraries Government Documents Department

IMPROVED CORROSION RESISTANCE FOR ALUMINA REFRACTORY

Description: In order to increase the efficiency of advanced coal-fired power systems, higher working fluid temperatures must be reached. Some system surfaces will have to be protected by covering them with corrosion-resistant refractories. Corrosion is the degradation of the material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases causing loss of material and, consequently, a decrease in the strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Earlier tests with several commercially available high-temperature castable refractories showed that the fused-alumina aggregate grains within the materials had the highest corrosion resistance of any of the castable materials. However, the cement holding the grains was easily attacked. Therefore, to improve the corrosion resistance and thermomechanical properties of alumina-based refractories, we attempted to change the cement to a more corrosion- and erosion-resistant bonding material through the addition of rare-earth oxides (REO). Phase diagrams were used to identify stable high-melting-temperature materials within the lanthanide-alumina series that could modify the bonding phase of the alumina-based refractory. Two mechanisms of reducing corrosion were investigated. One was the formation of corrosion-resistant layers within the refractory. The other was increased sintering to increase strength and seal continuous pores that would reduce slag penetration. Garnets (Re{sub 3}Al{sub 5}O{sub 12}) and perovskites (ReAl{sub 2}O{sub 3}), where Re is the REO, are two of the stable high-melting-temperature materials identified that were believed could be formed in the refractory matrix to help reduce corrosion rates. For the base refractory, Plicast 99 made by Plibrico was chosen. It is a 99% alumina castable composed of fused alumina aggregate and a cement made primarily from Alphabond 100, produced by Alcoa. The initial work involved designing a test matrix to study the effects ...
Date: April 30, 1999
Creator: Hurley, John P. & Kleven, Patty L.
Partner: UNT Libraries Government Documents Department

Task 6.3/6.7.4 - Engineering Performance of Advanced Structural Materials

Description: Future energy systems will be required to fire low-grade fuels and meet higher energy conversion efficiencies than today's systems. The steam cycle used at present is-limited to a maximum temperature of 550C, because above that the stainless steel tubes deform and corrode excessively. However, to boost efficiency significantly, much higher working fluid temperatures are required. Although high-temperature alloys will suffice for the construction of these components in the near term, the greatest efficiency increases can only be reached with the use of advanced structural ceramics
Date: November 16, 1998
Creator: Hurley, John P. & Kay, John P.
Partner: UNT Libraries Government Documents Department

CORROSION OF HIGH-TEMPERATURE ALLOYS

Description: Five alloys were tested in the presence of water vapor and water vapor with HCl for 1000 hours using simulated combustion gas. Samples were removed at intervals during each test and measured for determination of corrosion rates. One sample of each alloy was examined with a SEM after the completion of each test. Cumulative corrosion depths were similar for the superstainless alloys. Corrosion for Alloy TP310 roughly doubled. Corrosion for the enhanced stainless alloys changed dramatically with the addition of chlorine. Corrosion for Alloy RA85H increased threefold, whereas Alloy TP347HFG showed an eightfold increase. SEM examination of the alloys revealed that water vapor alone allowed the formation of chromium oxide protective layers on the superstainless alloys. The enhanced stainless alloys underwent more corrosion due to greater attack of sulfur. Iron-rich oxide layers were more likely to form, which do not provide protection from further corrosion. The addition of chlorine further increased the corrosion because of its ability to diffuse through the oxide layers and react with iron. This resulted in a broken, discontinuous, and loose oxide layer that offered less protection. Niobium, although added to aid in creep strength, was found to be detrimental to corrosion resistance. The niobium tended to be concentrated in nodules and was easily attacked through sulfidation, providing conduits for further corrosion deep into the alloy. The alloys that displayed the best corrosion resistance were those which could produce chromium oxide protective layers. The predicted microstructure of all alloys except Alloy HR3C is the same and provided no further information relating to corrosion resistance. No correlation can be found relating corrosion resistance to the quantity of minor austenite-or ferrite-stabilizing elements. Also, there does not appear to be a correlation between corrosion resistance and the Cr:Ni ratio of the alloy. These alloys were tested for their corrosion ...
Date: October 1, 1999
Creator: Hurley, John P. & Kay, John P.
Partner: UNT Libraries Government Documents Department

Dynamic Testing of Gasifier Refractory

Description: The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.
Date: September 27, 2003
Creator: Mann, Michael D.; Shukla, Devdutt & Hurley, John P.
Partner: UNT Libraries Government Documents Department

Dynamic Testing of Gasifier Refractory

Description: The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.
Date: September 27, 2004
Creator: Mann, Michael D.; Shukla, Devdutt; Hong, Xi & Hurley, John P.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

Description: In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the ...
Date: January 1, 2002
Creator: Hurley, John P.; Henderson, Ann K.; Nowok, Jan W. & Swanson, Michael L.
Partner: UNT Libraries Government Documents Department

Task 6.5/6.7.1 - Materials for Gas Separation and Hydrogen Separation Membranes

Description: Catalytic gasification of coal to produce H2- and CH4-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts as possible from the fuel gas before they enter the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy & Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 8000 C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 ~), which inefficiently separate the undesired gases by operating in the Knudsen diffusion region of mass transport. Other membranes with smaller pore sizes ( <5 ~) operate in the molecular sieving region of mass transport phenomena. Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow.
Date: July 1, 1997
Creator: McCollor, Donald P. & Hurley, John P.
Partner: UNT Libraries Government Documents Department

Task 6.5/6.7.1 - Materials for Gas Separation and Hydrogen Separation Membranes

Description: Catalytic gasification of coal to produce H2- and CH4-rich gases for consumption in molten carbonate fhel cells is currently under development; however, to optimize the fiel cell performance and extend its operating life, it is desired to separate as much of the inerts as possible from the fuel gas before they enter the fiel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy& Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 800 `C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 ~), which inefllciently separate the undesired gases by operating in the Knudsen diffision region of mass transport. Other membranes with smaller pore sizes (<5 ~) operate in the molecular sieving region of mass transport phenomena. Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow.
Date: January 1, 1998
Creator: McCollor, Donald P. & Hurley, John P.
Partner: UNT Libraries Government Documents Department

Task 6.3/6.7.4 - Silicon Carbide Joining

Description: Future energy systems will be required to fire low-grade fuels and meet higher energy conversion efficiencies than today's systems. The steam cycle used at present is limited to a maximum temperature of 550 "C, because above that the stainless steel tubes deform and corrode excessively. To boost efficiency significantly, much higher working fluid temperatures are required. Although high-temperature alloys will suffice for the construction of these components in the near-term, the greatest efficiency increases can only be reached with the use of advanced structural ceramics such as silicon carbide (SiC). However, SiC does not melt, but instead sublimes at temperatures over 2000 "C. Therefore, it is not possible to join pieces of it through welding, and most brazing compounds have much lower melting points so the joints lose strength at temperatures much lower than the maximum use temperature of the SiC. Since larger objects, such as heat exchangers, cannot be easily created from smaller ceramic pieces, the size of the SiC structures that can presently be manufactured are limited by the size of the sintering furnaces (approximately 10 feet for sintered alpha silicon carbide). In addition, repair of the objects will require the use of field joining techniques. Some success has been made by causing silicon and carbon to react at 1400 0-1 500 "C to form SiC in a joint (Rabin, 1995) but these joints contain continuous channels of unreacted silicon which cause the joints to corrode and creep excessively at temperatures below 1260 "C (Breder, 1996). At present, no joining techniques are available that allow sintered alpha SiC to be used to its full potential.
Date: February 1, 1998
Creator: Hurley, John P. & Kay, John P.
Partner: UNT Libraries Government Documents Department

Task 6.7.2 - Improved Corrosion Resistance of Alumina Refractories

Description: In order to increase the efficiency of advanced coal-fired power systems, higher working, fluid temperatures must be reached. To protect some system surfaces, they are covered with corrosion-resistant refractories. Corrosion is the degradation of material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and, consequently, a decrease in strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of the attack. Once identified, methods for reducing corrosion rates can be developed. In order to determine the reactivity of a refractory to a slag, several tests have been developed. The most common are the cup slag test, drip slag test American Society for Testing and Materials ([ASTM] C768), gradient slag test, rotary slag test (ASTM C874)and the dip-and- spin test. Among these tests, the cup slag test is the only static test method and the most commonly used. Previous static testing at the University of North Dakota Energy & Environmental Research Center (EERC) has shown that alumina-based castable refractories are among the least expensive and most corrosion-resistant materials for the highest-temperature coal-fired power system applications.
Date: February 1, 1998
Creator: Hurley, John P. & Kleven, Patricia L.
Partner: UNT Libraries Government Documents Department

SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

Description: The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosion process of SiAlON-Y ceramics in combustion gases at 1300 C. The interfacial chemical precipitation of the YAG phase is beneficial. This phase may crystallize in cubic and/or tetragonal modifications and if formed in SiAlON-Y ceramic may simultaneously generate residual stress. Also, this phase can contain a large number of point defects, which is a consequence of the large unit cell and complexity of the YAG structure because it has no close-packed oxygen planes. Therefore, the need exists to elucidate the corrosion mechanism of a multilayered barrier with respect to using SiAlON-YAG as a corrosion-protective coating. Stress corrosion cracking in the grain boundary of a silicon nitride (Si{sub 3}N{sub 4}) ceramic enriched in a glassy phase such as SiAlON can significantly affect its mechanical properties. It has been suggested that the increased resistance of the oxynitride glass to stress corrosion is related to the increased surface potential of the fracture surface created in the more durable and highly cross-linked oxynitride glass network structure. We expect that either increased or decreased surface potential of the intergranular glassy phase is brought about by changes in the residual stress of the SiAlON-Y ceramic and/or creation of a space-charge region at the SiAlON-YAG interface. Both ...
Date: June 1, 2000
Creator: Nowok, Jan W.; Hurley, John P. & Kay, John P.
Partner: UNT Libraries Government Documents Department

Dynamic Testing of Gasifier Refractory

Description: The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by refractory materials under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) was utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. High-alumina and high-chromia refractory bricks were tested using slags obtained from two solid fuel gasifiers. Testing was performed at 1475 C in a reducing atmosphere (2% H{sub 2} in N{sub 2}) The CADCAF tests show that high-chrome refractories have greater corrosion resistance than high-aluminum refractories; coal slag readily diffuses into the refractory through its grain boundaries; the refractory grains are more stable than the matrix in the tests, and the grains are the first line of defense against corrosion; calcium and alkali in the slag are more corrosive than iron; and silicon and calcium penetrate the deepest into the refractory. The results obtained from this study are preliminary and should be combined with result from other research programs. In particular, the refractory corrosion results from this study should be compared with refractories removed from commercial gasifiers.
Date: December 1, 2005
Creator: Mann, Michael D.; Seames, Wayne S.; Shukla, Devdutt; Hong, Xi & Hurley, John P.
Partner: UNT Libraries Government Documents Department

Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

Description: We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4 alpha) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 muA D/T ion beam current accelerated to 80 kV. The generator utilizes a RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively-coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80percent can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results, such as the current density, atomic ion fraction, electron temperature, and electron density, from ion source testing will be discussed.
Date: August 8, 2008
Creator: Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe & Leung, Ka-Ngo
Partner: UNT Libraries Government Documents Department

Task 6.5 - Gas Separation and Hot-Gas Cleanup

Description: Catalytic gasification of coal to produce H{sub 2}- and CH{sub 4}-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before they enter the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy & Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 800 C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 {angstrom}), which inefficiently separate the undesired gases by operating in the Knudsen diffusion region of mass transport. Other membranes with smaller pore sizes (&lt;5 {angstrom}) operate in the molecular sieving region of mass transport phenomena, Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow. For gas separation under Knudsen diffusion, increasing feed pressure and pressure ratio across the membrane should increase gas permeability; decreasing the temperature and the permeate-to-total flow ratio should also ...
Date: June 1, 1997
Creator: Swanson, Michael L.; Ness Jr., Robert O.; Hurley, John P. & McCollor, Donald P.
Partner: UNT Libraries Government Documents Department

Sampling and Analysis at the Vortec Vitrification Facility in Paducah, Kentucky. Semiannual report, November 1, 1996--March 31, 1997

Description: The Vortec Cyclone Melting System (CMS) facility; to be located at the U.S. Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. The primary components of Vortec`s CMS are a counter rotating vortex (CRV) reactor and cyclone melter. In the CMS process, granular glass forming ingredients and other feedstocks are introduced into the CRV reactor where the intense CRV mixing allows the mixture to achieve a stable reaction and rapid heating of the feedstock materials. Organic contaminants in the feedstock are effectively oxidized, and the inert inorganic solids are melted. The University of North Dakota Energy {ampersand} Environmental Research Center (EERC) has been contacted to help in the development of sampling plans and to conduct the sampling at the facility. This document is written in a format that assumes that the EERC will perform the sampling activities and be in charge of sample chain of custody, but that another laboratory will perform required sample analyses.
Date: December 31, 1997
Creator: Laudal, Dennis L.; Lillemoen, Carolyn M.; Hurley, John P.; Ness, Sumitra R.; Stepan, Daniel J. & Thompson, Jeffrey, S.
Partner: UNT Libraries Government Documents Department

HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

Description: The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 ...
Date: December 1, 1999
Creator: Collings, Michael E.; Dockter, Bruce A.; Hajicek, Douglas R.; Henderson, Ann K.; Hurley, John P.; Kleven, Patty L. et al.
Partner: UNT Libraries Government Documents Department

EERC Center for Biomass Utilization 2006

Description: The Center for Biomass Utilization (CBU®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.
Date: May 27, 2009
Creator: Zygarlicke, Christopher J.; Hurley, John P.; Aulich, Ted R.; Folkedahl, Bruce C.; Strege, Joshua R.; Patel, Nikhil et al.
Partner: UNT Libraries Government Documents Department