29 Matching Results

Search Results

Advanced search parameters have been applied.

Isolation and Characterization of Novel Microbacteriophage Barbara

Description: Poster presentation for the 2010 University Scholars Day at the University of North Texas discussing research on the isolation of a new strain of mycobacteriophage from soil collection using a Mycobacterium smegmatis host strain and an enrichment protocol.
Date: April 15, 2010
Creator: Mitchell, Angel; Simon, Stephanie E.; Benjamin, Robert C. & Hughes, Lee E.
Partner: UNT Honors College

Pyrimidine Metabolism in Streptomyces griseus

Description: Salvage of pyrimidine nucleosides and bases by S. griseus and the regulation of aspartate transcarbamoylase (ATCase) were studied. The velocity-substrate curve for S. griseus ATCase was hyperbolic for both aspartate and carbamoylphosphate. The enzyme activity was diminished in the presence of ATP, CTP, or UTP. The synthesis of ATCase was repressed in cells grown in the presence of exogenous uracil. The specific activity of cells grown with uracil was 43 percent of that for cells grown in minimal medium only. Maximal ATCase and dihydroorotase activities were found in the same column fraction after size-exclusion chromatography, suggesting that both activities could reside in the same polypeptide. The pyrimidine salvage enzymes cytosine deaminase and uridine phosphorylase were identified in S. griseus using HPLC reversed-phase chromatography.
Date: August 1994
Creator: Hughes, Lee E. (Lee Everette)
Partner: UNT Libraries

Regulation of Alternative Sigma Factors During Oxidative and Ph Stresses in the Phototroph Rhodopseudomonas Palustris

Description: Rhodopseudomonas palustris is a metabolically versatile phototrophic α-proteobacterium. The organism experiences a wide range of stresses in its environment and during metabolism. The oxidative an pH stresses of four ECF (extracytoplasmic function) σ-factors are investigated. Three of these, σ0550, σ1813, and σ1819 show responses to light-generated singlet oxygen and respiration-generated superoxide reactive oxygen species (ROS). The EcfG homolog, σ4225, shows a high response to superoxide and acid stress. Two proteins, one containing the EcfG regulatory sequence, and an alternative exported catalase, KatE, are presented to be regulated by σ4225. Transcripts of both genes show similar responses to oxidative stress compared to σ4225, indicating it is the EcfG-like σ-factor homolog and controls the global stress response in R. palustris.
Date: August 2014
Creator: Perry, Leslie M.
Partner: UNT Libraries

Isolation and Characterization of Phages Infecting Streptomyces azureus

Description: Isolating novel phages using Streptomyces azureus, which produces antibiotic thiostrepton, as a host, and characterizing the genomes may help us to find new tools that could be used to develop antibiotics in addition to contribute to the databases of phages and specifically, Streptomyces phages. Streptomyces phages Alsaber, Omar, Attoomi, Rowa, and ZamZam were isolated using during this study. They were isolated from enriched soil and sequenced by Illumina sequencing method. They were isolated from three different geographical regions. They are siphoviridae phages that create small clear plaques with a diameter of approximately 0.5-1 mm, except for Rowa which has cloudy plaques, and they have varied sizes of their heads and tails. ZamZam was not characterized at this time. The sequencing shows that they are circular genome with 3' sticky overhang and various genomes' sizes with high percentage of GC content with the average of 66%. Alsaber was classified under sub-cluster BD3, while Omar was categorized under sub-cluster BD2. They share the same cluster of Cluster BD. Rowa was placed in Cluster BL and Attoomi is currently a singleton that does not fit into an established cluster. Alsaber yields 76 putative genes with no tRNA, Omar 81 putative genes with 1 tRNA. Attoomi 53 putative genes with no tRNA, and Rowa with 61 orfs and 7 tRNA. Rowa also was a putative temperate phage due to its lysogenic activity, and Row was not able to reinfect the lysogenic strain, S. azureus (Rowa). All of the isolated phages infected S. indigocolor, while only Attoomi and Rowa were able to infect S. tricolor. Upon completion of this project, we acquired more data and understanding of S. azureus phages and Actinobacteriophage in general, which will expand the scale of future research of Streptomyces bacteriophages.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2018
Creator: Sulaiman, Ahmad M.
Partner: UNT Libraries

The Microbial Retting Environment of Hibiscus Cannabinus and Its Implications in Broader Applications

Description: Fiber-yielding plants is an area of increased interest due to the potential use in a variety of green-based materials. These biocomposites can be incorporated into multiple uses; for example, to replace building materials and interior vehicular paneling. The research here aims to focus in on the crop Hibiscus cannabinus for utilization into these functions. H. cannabinus is economically attractive due to the entire process being able to be accomplished here in the United States. The plant can be grown in a relatively short growth period (120-180 days), and then processed and incorporated in a biocomposite. The plant fiber must first be broken down into a useable medium. This is accomplished by the retting process, which occurs when microbial constituents breakdown the heteropolysaccharides releasing the fiber. The research aims to bridge the gap between the primitive process of retting and current techniques in molecular and microbiology. Utilizing a classical microbiological approach, which entailed enrichment and isolation of pectinase-producing bacteria for downstream use in augmented microbial retting experiments. The tracking of the bacteria was accomplished by using the 16S rRNA which acts as “barcodes” for bacteria. Next-generation sequencing can then provide data from each environment telling the composition and microbial diversity of each tested variable. The main environments tested are: a natural environment, organisms contributed by the plant material solely, and an augmented version in which pectinase-producing bacteria are added. In addition, a time-course experiment was performed on the augmented environment providing data of the shift to an anaerobic environment. Lastly, a drop-in set was performed using each isolate separately to determine which contributes to the shift in microbial organization. This research provided a much needed modernization of the retting technique. Previous studies have been subject to simple clone libraries and growth plate assays and next-generation sequencing will bring the understanding of ...
Date: May 2015
Creator: Visi, David K.
Partner: UNT Libraries

Engineered Microbial Consortium for the Efficient Conversion of Biomass to Biofuels

Description: Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The first objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself. The hydrolytic function of crude cellulosome extracts from C. cellulolyticum on carboxymethyl cellulose (CMC) with 0, 5, 10, 15, 20 and 25% (v/v) ethanol was determined. Results indicated that the endoglucanase activity of the cellulosome incubated in 5% and 10% ethanol was significantly different from a control without ethanol addition. Furthermore a significant difference was observed in endoglucanase activity for cellulosome incubated in 5%, 10%, 15%, 20% and 25% ethanol in a standalone experiment. Endoglucanase activity continued to be observed for up to 25% ethanol, indicating that cellulosome function in ethanol will not be an impediment to future efforts towards engineering increasing production titers to levels at least as high as the current physiological limits of the most tolerant ethanologenic microbes. The second objective of this work was to study bioethanol production by a microbial co-culture involving Clostridium cellulolyticum and a recombinant Zymomonas mobilis engineered for the utilization of oligodextrans. The recombinant Z. mobilis ZM4 pAA1 and wild type ZM4 were first tested on RM medium (ATCC 1341) containing 2% cellobiose as the carbon source. Ethanol production from the recombinant Z. mobilis was three times that observed from the wild type Z. mobilis. Concomitant with ethanol production was the reduction in OD from 2.00 to 1.580, indicating the consumption of cellobiose. No such change in OD was observed from the wild type. The recombinant ZM4 was then co-cultured with C. cellulolyticum using cellobiose and microcrystalline cellulose respectively as carbon sources. Results indicate that the recombinant ZM4 acted synergistically with C. cellulolyticum ...
Date: August 2014
Creator: Anieto, Ugochukwu Obiakornobi
Partner: UNT Libraries

Investigating the Ability of Pseudomonas aeruginosa pyrE Mutants to Grow and Produce Virulence Factors

Description: Pseudomonas aeruginosa are medically important bacteria that are notorious for causing nosocomial infections. To gain more knowledge into understanding how this organism operates, it was decided to explore the pyrimidine biosynthetic pathway. Pyrimidine synthesis, being one half of the DNA structure, makes it a very important pathway to the organism’s survivability. With previous studies being done on various genes in the pathway, pyrE has not been studied to the fullest extent. To study the function of pyrE, a site directed mutagenesis was done to completely knock out pyrE, which encodes the protein orotate phosphoribosyl transferase that is responsible for converting orotate into orotate monophosphate (OMP). A mutation in this step leads to accumulation and secretion of orotate into the medium. Analyzing virulence factors produced by the mutant and comparing to the wild type, some intriguing features of the mutant were discovered. One of the findings was the over expression of virulence factors pyoverdin and pyocyanin. Pyocyanin over expression, based on the results of this study, is due to the accumulation of orotate while over production of pyoverdin is due to the accumulation of dihydroorotate. The other virulence factors studied were motility assays, exoproducts, and growth analysis. All virulence factor production was reduced significantly in the mutant compared to the wild type. The casein protease assay showed absolutely no production of proteases in the mutant. The conclusion is that orotate accumulation leads to a significant reduction in virulence factor production in Pseudomonas aeruginosa. In addition to that, it was found that excess orotate in the wild type led to a decrease in quorum sensing regulated products.
Date: December 2014
Creator: Niazy, Abdurahman
Partner: UNT Libraries

Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido Attwateri

Description: The Attwater’s prairie-chicken (Tympanuchus cupido attwateri; APC) is a species of grouse native to Texas coastal prairies and is on the critically endangered species list as a result of habitat destruction and overhunting. All of the current populations were captively bred and released into the wild. Survivorship for released APCs is very low, and individuals seldom survive to reproduce in the wild. One factor contributing to this may be an alteration in the gut microbiota as a result of captivity. Factors potentially influencing the gut microbial composition in captivity include antibiotic therapy, stress, and a predominantly commercially formulated diet. Recent studies have begun to shed light on the importance of the host microbial endosymbionts. Antibiotic administration, stress, diet, age, genotype and other factors have been shown to influence microbial populations in the gastrointestinal tracts of many different vertebrates. Sequencing of 16S rRNA gene amplicons on the Ion Torrent™ platform was used in this study to identify groups of bacteria in the cloacas as a surrogate for the gut microbiota in the APC. Antibiotic-treated and untreated birds, wild-hatched and captive-bred birds, and individuals sampled before and after release to the wild were examined. Significant differences were found between wild-hatched and captive raised birds both pre- and post release. In addition, there was extensive variation among the populations at the lower taxonomic ranks between individuals for each group of APCs. Principal coordinate analysis based on the weighted UniFrac distance metric further exhibited some clustering of individuals by treatment. These data suggest that captive breeding may have long-term effects on the cloacal microbiota of APCs with unknown consequences to their long-term health and survivorship.
Date: August 2014
Creator: Simon, Stephanie E.
Partner: UNT Libraries

Purification and Analysis of Mycobacteriophage Alice

Description: This paper discusses research on the purification and analysis of mycobacteriophage Alice. The purpose of this research is to expand the knowledge of mycobacteriophage and analyze a single mycobacteriophage genome to be archived for future use.
Date: April 15, 2010
Creator: Manley, Coreen M.; Simon, Stephanie E.; Benjamin, Robert C. & Hughes, Lee E.
Partner: UNT Honors College

Stress Response by Alternative σ-factor, RpoH, and Analysis of Posttranslational Modification of the Heat Shock Protein, Dnak, in Escherichia coli

Description: Bacteria have developed specialized responses that involve the expression of particular genes present in a given regulon. Sigma factors provide regulatory mechanisms to respond to stress by acting as transcriptional initiation factors. This work focuses on σ32 during oxidative stress in Escherichia coli. The differential response of key heat shock (HS) genes was investigated during HS and oxidative stress using qPCR techniques. While groEL and dnaJ experienced increases in transcriptional response to H2O2 (10 mM), HS (42°C), and paraquat (50 mM) exposure, the abundance of dnaK over the co-chaperones was apparent. It was hypothesized that DnaK undergoes oxidative modification by reactive carbonyls at its Lys-rich C-terminus, accounting for the differential response during oxidative stress. A σ32-mediated β-galactosidase reporter was devised to detect the activity of wild-type DnaK and DnaKV634X modified to lack the Lys-rich C-terminus. Under unstressed conditions and HS, σ32 was bound at the same rate in both strains. When subjected to H2O2, the WT DnaK strain produced significantly higher β-galactosidase than DnaKV634X (one-tailed Student’s t test p=0.000002, α=0.05) and approached the same level of output as the lacZ positive control. The β-galactosidase assay indicates that DnaK undergoes Lys modification in the WT strain, preventing the protein from binding σ32, increasing the activity of σ32, and resulting in higher β-galactosidase activity than the DnaKV634X strain. In the DnaKV634X strain DnaK continues to bind σ32 so that σ32 could not promote the production of β-galactosidase. These findings demonstrate how DnaK is oxidatively modified, hindering the interaction with σ32 in manner distinct from HS.
Date: May 2015
Creator: Martinez, Sarah N.
Partner: UNT Libraries

Identification of Genes Involved in Flocculation by Whole Genome Sequencing of Thauera aminoaromatica Strain MZ1T Floc-defective Mutants

Description: Thauera aminoaromatica MZ1T, a floc-forming bacterium isolated from an industrial activated sludge wastewater treatment plant, overproduces exopolysaccharide (EPS) leading to viscous bulking. This phenomenon results in poor sludge settling and dewatering during the clarification process. To identify genes responsible for bacterial flocculation, a whole genome phenotypic sequencing technique was applied. Genomic DNA of MZ1T flocculation-deficient mutants were subjected to massively parallel sequencing. The resultant high-quality reads were assembled and compared to the reference genome of the wild type genome. We identified nine nonsynonymous mutations and one nonsense mutation putatively involved in EPS biosynthesis. Complementation of the nonsense mutation located in an EPS deacetylase gene restored the flocculating phenotype. The FTIR spectra of EPS isolated from the wild-type showed reduced C=O peak of the N-acetyl group at 1665 cm-1 as compared to the spectra of MZ1T floc-deficient mutant EPS, suggesting that the WT EPS was partially deacetylated. Gene expression analysis also demonstrated the deacetylase gene transcript increased before flocculation occurred. The results suggest that the deacetylation of MZ1T EPS is crucial for flocculation. The information obtained from this study will be useful for preventing viscous bulking and wastewater treatment system failure, and may have potential applications in the biotechnology sector for the controlled removal of cells.
Date: December 2015
Creator: Prombutara, Pinidphon
Partner: UNT Libraries

Isolation and Genomic Characterization of 45 Novel Bacteriophages Infecting the Soil Bacterium Streptomyces griseus

Description: Bacteriophages, or simply "phages," are the most abundant biological entities on the planet and are thought to be the largest untapped reservoir of available genetic information. They are also important contributors to both soil health and nutrient recycling and have significantly influenced our current understanding of molecular biology. Bacteria in the genus Streptomyces are also known to be important contributors to soil health, as well as producing a number of useful antibiotics. The genetic diversity of large (> 30) groups of other actinobacteriophages, i.e. phages infecting a few close relatives of the Streptomycetes, has been explored, but this is the first formal effort for Streptomyces-infecting phages. Described here are a group of 45 phages, isolated from soil using a single Streptomycete host, Streptomyces griseus ATCC 10137. All 45 phages are tailed phages with double-stranded DNA. Siphoviruses predominate, six of the phages are podoviruses, and no myoviruses were observed. Notably present are seven phages with prolate icosahedral capsids. Genome lengths and genome termini vary considerably, and the distributions of each are in line with findings among other groups of studied actinobacteriophages. Interestingly, the average G+C among the 45 phages is around 11% lower than that of the isolation host, a larger disparity than reported for other groups of actinobacteriophages. Eighteen of the phages carry between 17 and 45 tRNAs and 12 of those carry a single tmRNA. Forty-three phages were grouped into seven clusters and two subclusters based on dot plot analysis, average nucleotide identities, and gene content similarities. Two phages were not clustered with other phages in this dataset. A total of 5250 predicted genes were sorted into 1300 gene "phamilies," with about 8% of the total phamilies having only a single member. Analysis of gene content among the 45 phages indicates first that most clusters presented here appear to ...
Date: December 2018
Creator: Hale, Richard
Partner: UNT Libraries

Genome Sequences of Streptomyces Phages Amela and Verse

Description: This article describes Amela and Verse, two Streptomyces phages isolated by enrichment on Streptomyces venezuelae (ATCC 10712) from two different soil samples.
Date: February 18, 2016
Creator: Layton, Sonya R.; Hemenway, Ryan M.; Munyoki, Christine M.; Barnes, Emory B.; Barnett, Sierra E.; Bond, Alec M. et al.
Partner: UNT College of Arts and Sciences

Genome Sequences of Five Streptomyces Bacteriophages Forming Cluster BG

Description: This article discusses the isolation of five novel phages, which were used to established the cluster BF, using Streptomyces griseus subsp. griseus strain ATcC 10137 as the host.
Date: July 13, 2017
Creator: Donegan-Quick, Richard; Gibbs, Zane A.; Amaku, Patricia O.; Bernal, Joshua T.; Boyd, Dana A. M.; Burr, Angela R. et al.
Partner: UNT College of Arts and Sciences