9 Matching Results

Search Results

Advanced search parameters have been applied.

Projected transuranic waste loads requiring treatment, storage, and disposal

Description: This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP`s design capacity is sufficient for the CH TRU waste found throughout the DOE Complex.
Date: March 1, 1996
Creator: Hong, K. & Kotek, T.
Partner: UNT Libraries Government Documents Department

Thin film conductive polymer for microactuator and micromuscle applications

Description: Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.
Date: April 14, 1994
Creator: Lee, A.P.; Hong, K.; Trevino, J. & Northrup, M.A.
Partner: UNT Libraries Government Documents Department

Calculation of projected waste loads for transuranic waste management alternatives

Description: The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTE{underscore}MGMT computational model. WASTE{underscore}MGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives.
Date: June 1, 1995
Creator: Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y. & Kaicher, C.
Partner: UNT Libraries Government Documents Department

Environmental radiation exposure: Regulation, monitoring, and assessment

Description: Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.
Date: January 1, 1991
Creator: Chen, S.Y.; Yu, C. & Hong, K.J.
Partner: UNT Libraries Government Documents Department

Approach for systematic evaluation of transuranic waste management alternatives

Description: This paper describes an approach for systematic evaluation of management alternatives that are being considered for the treatment, storage, and disposal of transuranic waste (TRUW) at U.S. Department of Energy sites. The approach, which is currently under development, would apply WASTE-MGMT, a database application model developed at Argonne National Laboratory, to estimate projected environmental releases and would evaluate impact measures such as health risk and costs associated with each of the waste management alternatives. The customized application would combine site-specific TRUW inventory and characterization data with treatment and transportation parameters to estimate the quantities and characteristics of the wastes to be treated, emissions of hazardous substances from the treatment facilities, and the quantities and characteristics of the wastes to be shipped between sites. These data would then be used to estimate for several TRUW management scenarios the costs and health risks of constructing and operating the required treatment facilities and of transporting TRUW for treatment and final disposal. Treatment, storage, and disposal of TRUW at DOE sites is composed of many variables and options at each stage. The approach described in this paper would provide for efficient consideration of all of these facets when evaluating potentially feasible TRUW management alternatives. By expanding existing databases, this model could eventually be adapted to accommodate the introduction of new treatment technologies, updated TRUW characterization data, and/or revised waste acceptance criteria.
Date: February 1, 1994
Creator: Hong, K.; Koebnick, B. & Kotek, T.
Partner: UNT Libraries Government Documents Department

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

Description: Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.
Date: December 1, 1996
Creator: Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y. & Kaicher, C.
Partner: UNT Libraries Government Documents Department

CONCEPTUAL DATA MODELING OF THE INTEGRATED DATABASE FOR THE RADIOACTIVE WASTE MANAGEMENT

Description: A study of a database system that can manage radioactive waste collectively on a network has been carried out. A conceptual data modeling that is based on the theory of information engineering (IE), which is the first step of the whole database development, has been studied to manage effectively information and data related to radioactive waste. In order to establish the scope of the database, user requirements and system configuration for radioactive waste management were analyzed. The major information extracted from user requirements are solid waste, liquid waste, gaseous waste, and waste related to spent fuel. The radioactive waste management system is planning to share information with associated companies.
Date: February 27, 2003
Creator: Park, H.S; Shon, J.S; Kim, K.J; Park, J.H; Hong, K.P & Park, S.H
Partner: UNT Libraries Government Documents Department

Versatile electrochemical microsensors for environmental monitoring

Description: The fabrication of novel multielement microelectrode array sensors is reported. With regard to individual array elements, two main concepts are pursued. One involves the use of relatively non-selective microelectrode elements, coupled with pattern recognition methods, for data analysis. This strategy is most applicable when prior knowledge about the chemical environment is limited, or when mainly qualitative information is sought. The second concept involves the development of arrays containing intrinsically more selective microelectrode elements. Our main concern here is the determination of specific contaminants. Most of our current emphasis is in the selection and development of appropriate elements for microelectrode arrays of this type, with a goal of quantitative analysis for a variety of compounds and elements. Other efforts are concerned with defining the behavior of microelectrodes and devising mass fabrication methods for these sensors. Two designs for the arrays are discussed, one employing photolithographic fabrication methods and another in which individual microelectrodes are encased in glass. Potential applications for these sensors include monitoring for toxic contaminants in natural waters, monitoring waste streams, and process control. 35 refs., 16 figs., 3 tabs.
Date: October 1, 1991
Creator: Glass, R.S.; Hong, K.C. (Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.); Ashley, K. (San Jose State Univ., CA (United States). Dept. of Chemistry) & Granstaff, V.E. (Sandia National Labs., Albuquerque, NM (United States))
Partner: UNT Libraries Government Documents Department