9 Matching Results

Search Results

Advanced search parameters have been applied.

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

Description: This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated from produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.
Date: January 1, 2000
Creator: Hitzman, D.O. & Bailey, S.A.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.
Date: March 31, 2003
Creator: Hitzman, D. O.; Stepp, A. K.; Dennis, D. M. & Graumann, L. R.
Partner: UNT Libraries Government Documents Department

Microbial enhanced waterflooding pilot project, Mink Unit, Delaware-Childers (OK) field

Description: The first microbial-enhanced waterflood field project was initiated in October of 1986. The site selected for the project is in the Mink Unit of Delaware-Childers field in Nowata County, Oklahoma. The pilot area consists of four adjacent inverted five-spot patterns drilled on 5-acre spacing. There are 21 injection and 15 production wells on this pilot. Four of the 21 injection wells were treated with microbial formulation. Laboratory screening criteria were developed to evaluate microorganisms for this project. Several different microbial formulations were tested. Injectivity and microbial field survivability tests were conducted during the baseline period on two off-pattern wells, and a chemical tracer, fluorescein, was injected into the four injection wells during the baseline period. Methodologies for field applications of microorganisms in ongoing waterfloods were developed as a result of this project. Results from the field pilot showed that microorganisms could be injected into an ongoing waterflood without causing any problems in injectivity. Microbial treatment did improve oil production rate, and water/oil ratios for producing wells nearest the microbially treated injection wells continue to be more favorable than baseline values. 23 refs., 30 figs., 28 tabs.
Date: August 1, 1991
Creator: Bryant, R.S.; Burchfield, T.E.; Dennis, D.M. & Hitzman, D.O.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Date: February 11, 2003
Creator: Hitzman, D.O.; Bailey, S.A. & Stepp, A.K.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Date: February 11, 2003
Creator: Hitzman, D.O. & Stepp, A.K.
Partner: UNT Libraries Government Documents Department

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.
Date: September 1, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D. O.; Stepp, A. K.; Dennis, D. M. & Graumann, L. R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department