15 Matching Results

Search Results

Advanced search parameters have been applied.

LLNL Contribution to LLE FY09 Annual Report: NIC and HED Results

Description: In FY09, LLNL led 238 target shots on the OMEGA Laser System. Approximately half of these LLNL-led shots supported the National Ignition Campaign (NIC). The remainder was dedicated to experiments for the high-energy-density stewardship experiments (HEDSE). Objectives of the LLNL led NIC campaigns at OMEGA included: (1) Laser-plasma interaction studies in physical conditions relevant for the NIF ignition targets; (2) Demonstration of Tr = 100 eV foot symmetry tuning using a reemission sphere; (3) X-ray scattering in support of conductivity measurements of solid density Be plasmas; (4) Experiments to study the physical properties (thermal conductivity) of shocked fusion fuels; (5) High-resolution measurements of velocity nonuniformities created by microscopic perturbations in NIF ablator materials; (6) Development of a novel Compton Radiography diagnostic platform for ICF experiments; and (7) Precision validation of the equation of state for quartz. The LLNL HEDSE campaigns included the following experiments: (1) Quasi-isentropic (ICE) drive used to study material properties such as strength, equation of state, phase, and phase-transition kinetics under high pressure; (2) Development of a high-energy backlighter for radiography in support of material strength experiments using Omega EP and the joint OMEGA-OMEGA-EP configuration; (3) Debris characterization from long-duration, point-apertured, point-projection x-ray backlighters for NIF radiation transport experiments; (4) Demonstration of ultrafast temperature and density measurements with x-ray Thomson scattering from short-pulse laser-heated matter; (5) The development of an experimental platform to study nonlocal thermodynamic equilibrium (NLTE) physics using direct-drive implosions; (6) Opacity studies of high-temperature plasmas under LTE conditions; and (7) Characterization of copper (Cu) foams for HEDSE experiments.
Date: October 1, 2009
Creator: Heeter, R F; Landen, O L; Hsing, W W & Fournier, K B
Partner: UNT Libraries Government Documents Department

A broadband high-resolution elliptical crystal x-ray spectrometer for high energy density physics experiments

Description: Spectroscopic investigation of high temperature laser produced plasmas in general, and x-ray opacity experiments in particular, often requires instruments with both a broad coverage of x-ray energies and high spectral, spatial, and temporal resolution. We analyze the design, model the response, and report the commissioning of a spectrometer using elliptical crystals in conjunction with a large format, gated microchannel plate detector. Measurements taken with this instrument at the JANUS laser facilities demonstrate the designed spectral range of 0.24 to 5.8 keV, and spectral resolution E/{Delta}E > 500, resulting in 2 to 3 times more spectral data than achieved by previous spectrometer designs. The observed 100 picosecond temporal resolution and 35 {micro}m spatial resolution are consistent with the requirements of high energy density opacity experiments.
Date: March 31, 2006
Creator: Anderson, S G; Heeter, R F; Booth, R; Emig, J; Fulkerson, S; McCarville, T et al.
Partner: UNT Libraries Government Documents Department

Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE

Description: The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSG are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated ...
Date: January 25, 2010
Creator: Mukherjee, S K; Emig, J A; Griffith, L V; Heeter, R F; House, F A; James, D L et al.
Partner: UNT Libraries Government Documents Department

Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR

Description: A strong interaction of fast ions with ion Bernstein waves has been observed in TFTR. It results in a large increase in the fast ion loss rate, and heats the lost particles to several MeV. The lost ions are observed at the passing/trapped boundary and appear to be either DD fusion produced tritons or accelerated D neutral beam ions. Under some conditions, enhanced loss of DT alpha particles is also seen. The losses provide experimental support for some of the elements required for alpha energy channeling.
Date: December 1, 1995
Creator: Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C. et al.
Partner: UNT Libraries Government Documents Department

Enhanced loss of fusion products during mode conversion heating in TFTR

Description: Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v{perpendicular} due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to {approximately}1.5 times their birth energy.
Date: July 1, 1995
Creator: Darrow, D. S.; Majeski, R.; Fisch, N. J.; Heeter, R. F.; Herrmann, H. W.; Herrmann, M. C. et al.
Partner: UNT Libraries Government Documents Department

Calibration and Data Analysis for the KCIF Fast Magnetics System

Description: Alfven Eigenmodes (AEs) and other magnetohydrodynamic (MHD) phenomena have been studied at the Joint European Torus (JET) using a new 8-channel, 4 s, 1 MHz, 12-bit data acquisition system KC1F in conjunction with the JET fast Mirnov magnetic fluctuation pickup coils. The JET magnetic pickup coils were calibrated for the first time in the range 30-460 kHz using a new remote calibration technique which accounts for the presence of the first few LRC circuit resonances. A data-processing system has been developed within the MATLAB software environment to produce spectrograms of fluctuation amplitude and toroidal mode number versus frequency and time. The analysis software has been automated to allow routine overnight production of spectrogram web pages. Modes with amplitudes {delta}B/B {ge} 10{sup -8} and toroidal mode numbers |n| < 32 are now routinely detected. A pulse-characterization database has also been developed to select for the analysis of various useful subsets of the 4000+ JET discharges for which KC1F data is now available. Based on the work presented here and recent advances in data-acquisition technology, it should now be possible to obtain complete diagnostic data on the AEs.
Date: March 2000
Creator: Heeter, R. F.; Fasoli, A. F.; Ali-Arshad, A. S. & Moret, J. M.
Partner: UNT Libraries Government Documents Department

Plasma diagnostics for x-ray driven foils at Z

Description: We report the development of techniques to diagnose plasmas produced by X-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW X-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated 3-crystal Johann spectrometer with dual lines of sight to meet these requirements. We present sample data from experiments in which 1 cm, 180 eV tungsten pinches photoionized foils composed of 200{angstrom} Fe and 300{angstrom} NaF co-mixed and sandwiched between 1000{angstrom} layers of Lexan (CHO), and discuss the application of this work to benchmarking astrophysical models.
Date: June 17, 2000
Creator: Heeter, R F; Bailey, J E; Cuneo, M E; Emig, J; Foord, M E; Springer, P T et al.
Partner: UNT Libraries Government Documents Department

Benchmark Measurements of the Ionization Balance of Non-LTE Gold

Description: The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes <Z> ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred <Z> provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.
Date: April 20, 2007
Creator: Heeter, R F; Hansen, S B; Fournier, K B; Foord, M E; Froula, D H; Mackinnon, A J et al.
Partner: UNT Libraries Government Documents Department

Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

Description: The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.
Date: May 11, 2008
Creator: Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F. et al.
Partner: UNT Libraries Government Documents Department

X-Ray Photoionized Plasmas in the Laboratory

Description: The advanced spectroscopic capabilities of the new X-ray telescopes Chandra and XMM lead to a need for improved benchmarking of models for the photoionized accretion-disk plasmas which represent over half of known astrophysical X-ray sources. They report the first laboratory experimental results using 120 TW, 180 eV Z-pinch plasmas to drive iron samples into the photoionized equilibrium. The pinch spectrum, temperature, power and uniformity have been characterized in order to qualify it as a photoionization driver. Preliminary time-integrated (8 {angstrom} to 18 {angstrom}) and time-resolved (12.5 {angstrom} to 16 {angstrom}) absorption and emission spectra of photoionized L-shell Fe and K-shell Na and F were observed using X-ray crystal spectrometers. Plans for upcoming experiments are also discussed.
Date: April 22, 2000
Creator: Heeter, R.F.; Foord, M.E.; Thoe, R.S.; Emig, J.A.; Springer, P.T.; Bailey, J. et al.
Partner: UNT Libraries Government Documents Department

X-Ray-Spectroscopy of Astrophysically-Relevant Photoionized Iron Plasmas at Z

Description: In order to provide benchmark data for models used to interpret X-ray astronomy data from newly-launched orbital telescopes such as Chandra, they have used 120 TW, 180 eV pinch plasmas on the Sandia Z facility to drive iron foils into X-ray photoionized equilibrium. The experiment was designed to achieve photoionization parameters characteristic of accretion-powered objects such as X-ray binaries (neutron stars) and active galactic nuclei (black holes). These objects comprise roughly half of observed X-ray sources, but the interpretation of their spectra is difficult: state-of-the-art models for photoionized iron plasmas do not yet agree on the expected ionization balance. In the initial experiments the foil samples consisted of 200 {angstrom} of iron codeposited with 300 {angstrom} of sodium fluoride and sandwiched between two 1000 {angstrom} layers of Lexan (CH and O). They characterized the pinch spectrum, temperature, power and uniformity and qualified it as a photoionization driver. They obtained time-integrated absorption spectra for the foil from 8 to 18 {angstrom} and identified spectral lines from O VIII, F IX, Na X and XI, and Fe XVII and XVIII, i.e. neon-line and fluorine-like iron. Time-resolved absorption and emission spectra for the foils were also obtained from 12.5 to 16 {angstrom}, and hydrogen-like F and neon-like and fluorine-like Fe were again observed in the 2 ns time window of interest. In subsequent ride along experiments they have developed a density diagnostic and measured the density via foil-expansion imaging at two locations. They conclude by discussing upcoming experiments at Z in which they plan to obtain a full data set of plasma density, temperature, and absorption and emission spectra for multiple photoionization equilibria.
Date: June 12, 2000
Creator: Heeter, R.F.; Bailey, J.E.; Cuneo, M.E.; Emig, J.; Foord, M.E.; Springer, P.T. et al.
Partner: UNT Libraries Government Documents Department

Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

Description: The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.
Date: April 29, 2005
Creator: Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E et al.
Partner: UNT Libraries Government Documents Department

Laser coupling to reduced-scale targets at NIF Early Light

Description: Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.
Date: August 31, 2005
Creator: Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A et al.
Partner: UNT Libraries Government Documents Department