15 Matching Results

Search Results

Advanced search parameters have been applied.

Axions from cosmic string and wall decay

Description: If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.
Date: March 10, 2010
Creator: Hagmann, C A
Partner: UNT Libraries Government Documents Department

Monte Carlo Simulation of Proton-induced Cosimc Ray Cascades in the Atmosphere

Description: We have developed a Monte Carlo model of the Earth's atmosphere and implemented it in three different codes (GEANT4, MCNPX, and FLUKA). Primary protons in the energy range of 1 GeV-100 TeV are injected at the top of the atmosphere. The codes follow the tracks of all relevant secondary particles (neutrons, muons, gammas, electrons, and pions) and tally their fluxes at selectable altitudes. Comparisons with cosmic ray data at sea level show good agreement.
Date: March 14, 2007
Creator: Hagmann, C A; Lange, D J & Wright, D M
Partner: UNT Libraries Government Documents Department

FREYA-a new Monte Carlo code for improved modeling of fission chains

Description: A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.
Date: June 12, 2012
Creator: Hagmann, C A; Randrup, J & Vogt, R L
Partner: UNT Libraries Government Documents Department

Comparison of Ramsauer and Optical Model Neutron Angular Distributions

Description: In a recent paper it has been shown that the nuclear Ramsauer model does not do well in representing details of the angular distribution of neutron elastic scattering for incident energies of less than 60 MeV for {sup 208}Pb. We show that the default angular bin dispersion most widely used in Monte Carlo transport codes is such that the observed differences in angular shapes are on too fine a scale to affect transport calculations. The effect of increasing the number of Monte Carlo angle bins is studied to determine the dispersion necessary for calculations to be sensitive to the observed discrepancies in angular distributions. We also show that transport calculations are sensitive to differences in the elastic scattering cross section given by recent fits of {sup 208}Pb data compared with older fits.
Date: April 20, 2004
Creator: McNabb, D P; Anderson, J D; Bauer, R W; Dietrich, F S; Grimes, S M & Hagmann, C A
Partner: UNT Libraries Government Documents Department

New Capabilities in Mercury: A Modern, Monte Carlo Particle Transport Code

Description: The new physics, algorithmic and computer science capabilities of the Mercury general-purpose Monte Carlo particle transport code are discussed. The new physics and algorithmic features include in-line energy deposition and isotopic depletion, significant enhancements to the tally and source capabilities, diagnostic ray-traced particles, support for multi-region hybrid (mesh and combinatorial geometry) systems, and a probability of initiation method. Computer science enhancements include a second method of dynamically load-balancing parallel calculations, improved methods for visualizing 3-D combinatorial geometries and initial implementation of an in-line visualization capabilities.
Date: March 8, 2007
Creator: Procassini, R J; Cullen, D E; Greenman, G M; Hagmann, C A; Kramer, K J; McKinley, M S et al.
Partner: UNT Libraries Government Documents Department

A Proposal for First-Ever Measurement of Coherent Neutrino-Nucleus Scattering

Description: We propose to build and deploy a 10-kg dual-phase argon ionization detector for the detection of coherent neutrino-nucleus scattering, which is described by the reaction; {nu} + (Z,N) {yields} {nu} + (Z,N), where {nu} is the scattering neutrino, and (Z,N) is the target nucleus of atomic number Z and neutron number N. Its detection would validate central tenets of the Standard Model. We have built a gas-phase argon ionization detector to determine the feasibility of measuring the small recoil energies ({approx} 1keV) predicted from coherent neutrino scattering, and to characterize the recoil spectrum of the argon nuclei induced by scattering from medium-energy neutrons. We present calibrations made with 55-Fe, a low-energy X-ray source, and report on measurements to date of the recoil spectra from the 2-MeV LINAC Li-target neutron source at LLNL. A high signal-to-noise measurement of the recoil spectrum will not only serve as an important milestone in achieving the sensitivity necessary for measuring coherent neutrino-nucleus scattering, but will break new scientific ground on its own.
Date: February 5, 2008
Creator: Winant, C D; Bernstein, A; Foxe, M P; Hagmann, C A; Jovanovic, I; Kazkaz, K M et al.
Partner: UNT Libraries Government Documents Department

Update on the Development and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code

Description: An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-D combinatorial geometry (CG), 1-D radial meshes, 2-D quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model, support for continuous energy cross sections and S ({alpha}, {beta}) molecular bound scattering. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base.
Date: June 6, 2005
Creator: Procassini, R J; Taylor, J M; McKinley, M S; Greenman, G M; Cullen, D E; O'Brien, M J et al.
Partner: UNT Libraries Government Documents Department

GAMMA-RAY COMPTON LIGHT SOURCE DEVELOPMENT AT LLNL

Description: A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions.
Date: August 15, 2007
Creator: Hartemann, F V; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Jovanovic, I et al.
Partner: UNT Libraries Government Documents Department

Techniques and use of a tunable, laser-based, MeV-Class Compton scattering light source

Description: A Compton scattering {gamma}-ray source, capable of producing photons with energies ranging from 0.1 MeV to 0.9 MeV has been commissioned and characterized, and then used to perform nuclear resonance fluorescence (NRF) experiments. The key source parameters are the size (0.01 mm{sup 2}), horizontal and vertical divergence (6 x 10 mrad{sup 2}), duration (10 ps), spectrum and intensity (10{sup 5} photons/shot). These parameters are summarized by the peak brightness, 1.5 x 10{sup 15} photons/mm{sup 2}/mrad{sup 2}/s/0.1%bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photoelectron bunch, {gamma}-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on {sup 7}Li in LiH demonstrate the potential of Compton scattering photon sources to accurately detect isotopes in situ.
Date: June 30, 2009
Creator: Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M et al.
Partner: UNT Libraries Government Documents Department

Large-scale search for dark-matter axions

Description: Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.
Date: January 1, 1998
Creator: Hagmann, C. A.; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E. J.; McBride, J. et al.
Partner: UNT Libraries Government Documents Department