9 Matching Results

Search Results

Advanced search parameters have been applied.

Hydroforming design and process advisor

Description: The hydroforming process involves hydraulically forming components by conforming them to the inner contours of a die. These contours can be complex and can often cause the material being formed to be stressed to rupture. Considerable process knowledge and materials modeling expertise is required to design hydroform dies and hydroformed parts that are readily formed without being overly stressed. For this CRADA, materials properties for steel tubes subjected to hydraulic stresses were collected; algorithms were developed which combined the materials properties data with process knowledge; and a user friendly graphical interface was utilized to make the system usable by a design engineer. A prototype hydroforming advisor was completed and delivered to GM. The technical objectives of the CRADA were met allowing for the development of an intelligent design systems, prediction of forming properties related to hydroforming, simulation and modeling of process execution, and design optimization. The design advisor allows a rapid and seamless approach to integration an otherwise enormous and onerous task of analysis and evaluation.
Date: October 10, 1996
Creator: Greer, J.T. & Ni, C.M.
Partner: UNT Libraries Government Documents Department

Testing of the rectangular pivot-point bellows for the PPPL tokamak fusion test reactor

Description: The Neutral Beam Pivot Point Bellows (PPB) is installed in the duct which connects the Neutral Beam Enclosure to the Torus. This bellows, located at the pivot point, must fit the severely limited space available at the pivot-point location. Consequently, it has to be made rectangular in cross section with a large inside area for beam access. This leads to small convolutions with high stress concentrations. The function of the bellows is to permit change in the angular positioning of the neutral beam line with respect to the Tokamak, to isolate the Neutral Beam Line from the deflection of the Torus during bake out, and to allow for all misalignments. Internally the bellows will have a vacuum along with such gases such as hydrogen or deuterium. Tests parameters are described.
Date: December 1, 1983
Creator: Haughian, J.; Lou, K.; Greer, J.; Fong, M. & Scalise, D.T.
Partner: UNT Libraries Government Documents Department

PCB annual report for Oak Ridge National Laboratory EPA Identification Number - TN 1890090003, February 6, 1990--December 31, 1990

Description: Oak Ridge National Laboratory prepares a report annually as mandated by the Toxic Substances Control Act (TSCA) that summarizes records required of owners/operators of facilities where PCBs are in use. This report provides information of PCB and PCB-contaminated equipment in use or removed from service and PCB wastes generated, stored, and shipped off-site for treatment and disposal during the time period February 6, 1990, through December 31, 1990, as required by the revised TSCA regulations described in the December 21, 1989, Federal Register (54 FR 52716).
Date: October 15, 1991
Creator: Greer, J.K. Jr. & Foley, R.C.
Partner: UNT Libraries Government Documents Department

Commissioning of the SNS front-end systems at Berkeley Lab

Description: Construction of a 2.5-MeV linac injector, the Front-End (FE) for the Spallation Neutron Source (SNS) project, was completed in the spring of 2002. Of the major FE subsystems, the rf-driven H- ion source, the electrostatic LEBT, and the first of four RFQ modules had been commissioned by the spring of 2001, and commissioning of the remaining RFQ modules as well as the full system including the elaborate MEBT was carried out in Jan. through May, 2002. The Front End will be shipped to Oak Ridge, starting in June, 2002, and re-commissioned after installation at the SNS site. This paper gives an overview of FE major design features and experimental results obtained during the commissioning process at LBNL.
Date: May 1, 2002
Creator: Keller, R.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Lewis, S.; Lionberger, C. et al.
Partner: UNT Libraries Government Documents Department

UXO Engineering Design. Technical Specification and ConceptualDesign

Description: The design and fabrication of the UXO detector has numerous challenges and is an important component to the success of this study. This section describes the overall engineering approach, as well as some of the technical details that brought us to the present design. In general, an array of sensor coils is measuring the signal generated by the UXO object in response to a stimulation provided by the driver coil. The information related to the location, shape and properties of the object is derived from the analysis of the measured data. Each sensor coil is instrumented with a waveform digitizer operating at a nominal digitization rate of 100 kSamples per second. The sensor coils record both the large transient pulse of the driver coil and the UXO object response pulse. The latter is smaller in amplitude and must be extracted from the large transient signal. The resolution required is 16 bits over a dynamic range of at least 140 dB. The useful signal bandwidth of the application extends from DC to 40 kHz. The low distortion of each component is crucial in order to maintain an excellent linearity over the full dynamic range and to minimize the calibration procedure. The electronics must be made as compact as possible so that the response of its metallic parts has a minimum signature response. Also because of a field system portability requirement, the power consumption of the instrument must be kept as low as possible. The theory and results of numerical and experimental studies that led to the proof-of-principle multitransmitter-multireceiver Active ElectroMagnetic (AEM) system, that can not only accurately detect but also characterize and discriminate UXO targets, are summarized in LBNL report-53962: ''Detection and Classification of Buried Metallic Objects, UX-1225''.
Date: April 23, 2005
Creator: Beche, J-F.; Doolittle, L.; Greer, J.; Lafever, R.; Radding, Z.; Ratti, A. et al.
Partner: UNT Libraries Government Documents Department

Ion-source and LEBT issues with the front-end systems for the Spallation Neutron Source

Description: The Front-End Systems (FES) of the Spallation Neutron Source (SNS) project are being built by Berkeley Lab and will deliver a pulsed 40-mA H{sup -} ion beam at 2.5 MeV energy to the subsequent Drift-Tube Linac. The FES accelerator components comprise an rf driven, volume-production, cesium-enhanced, multi-cusp Ion Source; an electrostatic Low-Energy Beam Transport (LEBT) that includes provisions for transverse focusing, steering, and beam chopping; an RFQ accelerator; and a Medium-Energy Beam Transport (MEBT) line. The challenges for Ion Source and LEBT design are the generation of a plasma suitable for creating the required high H{sup -} ion density, lifetime of the rf antenna at 6% duty factor, removal of the parasitic electron population from the extracted negative ions, and emittance conservation. The paper discusses these issues in detail and highlights key experimental results obtained so far.
Date: September 1, 2001
Creator: Keller, R.; Cheng, D.; DiGennaro, R.; Gough, R.A.; Greer, J.; Leung, K.N. et al.
Partner: UNT Libraries Government Documents Department

Results of the SNS front end commissioning at Berkeley Lab

Description: The Front-End Systems (FES) for the Spallation Neutron Source (SNS) project comprise an rf-driven H{sup -} ion source, an electrostatic 2-lens LEBT, a 2.5 MeV RFQ, followed by a 14-quadrupole, 4-rebuncher MEBT including traveling-wave fast choppers. The nominal 2.5 MeV H{sup -} beam has a current of 38 mA at a repetition rate of 60 Hz and 1 ms pulse length, for a macro duty-factor of 6%, and is chopped at a rate of approximately 1 MHz with a mini duty-factor of 68%. The normalized rms beam emittance at the MEBT exit, matching the first tank of a 402.5 MHz Alvarez linac, is measured to be approximately 0.3 {pi} mm mrad. Diagnostic elements include wire scanners, BPMs, fast current monitors, a slit-harp emittance device and RFQ field monitoring probes. The results of the beam commissioning and the operation of the RFQ and diagnostic instrumentation are reported. The entire FES was shut down at LBNL at the end of May 2002 and will be recommissioned at ORNL prior to installation of the drift-tube linac.
Date: August 16, 2002
Creator: Ratti, A.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Keller, R.; Lewis, S. et al.
Partner: UNT Libraries Government Documents Department

Progress with the SNS front-end systems

Description: The Front-End Systems (FES) of the Spallation Neutron Source (SNS) project have been described in detail elsewhere [1]. They comprise an rf-driven H{sup {minus}} ion source, electrostatic LEBT, four-vane RFQ, and an elaborate MEBT. These systems are planned to be delivered to the SNS facility in Oak Ridge in June 2002. This paper discusses the latest design features, the status of development work, component fabrication and procurements, and experimental results with the first commissioned beamline elements.
Date: May 1, 2001
Creator: Keller, R.; Abraham, W.; Ayers, J.J.; Cheng, D.W.; Cull, P.; DiGennaro, R. et al.
Partner: UNT Libraries Government Documents Department