94 Matching Results

Search Results

Advanced search parameters have been applied.

A design for a combined function superconducting dipole for a muon collider FFAG accelerator

Description: The acceleration stages for a muon collider require that the muons be accelerated within a given ring in fewer than twenty turns. One type of accelerator that appears to be attractive for a synchrotron that accelerates the muon a factor of four in energy in a few turns is the Fixed Field Alternating Gradient (FFAG) type of accelerator. As the energy of the muon beam increases, the muons move toward a higher field region of a DC combined function dipole. The following dipole and quadrupole magnet characteristics are required for a muon FFAG machine to be successful: (1) The dipole will be a fixed field dipole with an impressed quadrupole and sextupole field. There may or may not be separate quadrupoles that mayor may not have added sextupole windings. (2) The horizontal aperture of the required good field region is wider than the vertical aperture of the required good field region. (3) The magnet is relatively short, so that the conventional SSC type of superconducting dipole or quadrupole ends can not be used. The field at the end of the magnet must fall off abruptly within the distance of less than one vertical aperture. For a magnet that is 400 mm long, the end region can be no more than 80 mm long. (4) The structure of the integrated field within the end region must be the same as the structure of the two-dimensional filed at the center of the magnet. A very preliminary design concept for a FFAG combined function dipole is presented in this paper.
Date: September 10, 1999
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

Some options for the muon collider capture and decay solenoids

Description: This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed.
Date: November 1, 1995
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

The effect of muon decay on the design of dipoles and quadrupoles for a muon collider

Description: The decay of muons to neutrinos and electrons can cause heating in the superconducting dipoles and quadrupoles in the muon collider acceleration rings and the colliding beam ring. The problem is particularly acute in the colliding beam ring where heating in the magnets can be high as 2.4 kW per meter in the bending magnets of muon collider ring with 2 TeV mu minus beams with 2.22{times}10{sup 12} particles per bunch at a repetition rate of 30 Hz. The energy deposited within the helium temperature region must be reduced at least three orders of magnitude in order for the refrigeration system to begin to keep up with the heat load. Beam heating from muon decay will require changes in dipole design from traditional cosine theta (or intersecting ellipse) design used in the SSC magnets. Some dipole and quadrupole design options are presented in this report for both the accelerator rings and the colliding beam rings.
Date: November 1, 1995
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

Some conceptual designs for a LASSY spectrometer magnet

Description: The LASSY spectrometer is a gas filled spectrometer (hydrogen or helium at a pressure of about 1 torr). The design bending power for the primary bending magnet for the spectrometer will have an induction bend radius product of 2.5 tesla-meters. In order to increase the acceptance of the spectrometer, the bending magnet system must be located close to the target where the desired nuclei are created. The spectrometer magnet system must consist of both bending and focusing elements so that the wide acceptance of particles can be brought to a focus at the analysis point that is down stream from the last magnet element. In order improve the spectrometer resolution and to catch the shortest lived nuclei, the length of the magnet system must be as short as possible. The length for the LASSY spectrometer magnet system from the target to the analysis point has been set at 2.5 meters or less. To improve the resolution of the spectrometer, the bending angle for bending magnet system must be increased to close to 180 degrees. In order to achieve a large bending angle and a short magnet system length, the bending induction must be above 3 tesla and the focusing elements must be combined with the bending elements. As a result, a LASSY spectrometer will have bending magnet with a bending angle from 140 to 170 degrees. This magnet win be combined with one or more focusing magnets (a straight dipole in some places and a combined function dipole in other places). The result is a single superconducting bending magnet with one or more quadrupoles incorporated within the large angle bending magnet.
Date: September 1, 1995
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

Description: This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.
Date: October 10, 1994
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

Description: Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump.
Date: October 1994
Creator: Green, M. A.
Partner: UNT Libraries Government Documents Department

Purdue University National Biomedical Tracer Facility: Project definition phase. Final report

Description: The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing and operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.
Date: February 15, 1995
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

Program Geothm: A thermodynamic process program for geothermal power plant cycles

Description: Program GEOTHM is a thermodynamic process program now under development for the LBL Geothermal Energy Program. To date, the program development has centered upon the modeling of working fluid properties, developing thermodynamic process models, and modeling the design performance of geothermal power plants. When the program is completed, it will be able to optimize a power plant or refrigeration plant for minimum cost power or refrigeration. Furthermore, operation of the thermodynamic cycles at off design conditions will be able to be simulated. Program GEOTHM is currently able to calculate several types of geothermal power cycles using a wide variety of working fluids.
Date: October 1, 1974
Creator: Green, M.A. & Pines, H.S.
Partner: UNT Libraries Government Documents Department

Superconducting magnets for muon capture and phase rotation

Description: There are two key systems that must operate efficiently, in order for a muon collider to be a viable option for high energy physics. These systems are the muon production and collection system and the muon cooling system. Both systems require the use of high field superconducting solenoid magnets. This paper describes the supcrconducting solenoid system used for the capture and phase rotation of the pions that are produced on a target in a high intensity proton beam.
Date: July 26, 1999
Creator: Green, M.A. & Weggel, R.J.
Partner: UNT Libraries Government Documents Department

Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source

Description: Compact light sources are being proposed for protein crystallography, medical imaging, nano-machining and other areas of study that require intense sources of x rays at energies up to 35 keV. In order for a synchrotron light source to be attractive, its capital cost must, be kept low. The proposed compact light source has superconducting bending elements to bend the stored beam and produce the x rays. Additional focusing for the machine is provided by conventional quadrupoles. An important part of the cost optimization of a compact light source is the cost of the bending magnets. In the case of a machine with superconducting bending elements, the bending magnet system can represent close to half of the storage ring cost. The compact light source storage rings studied here have a range of stored electron energies from 1.0 to 1.5 GeV. For a number of reasons, it is desirable to keep the storage ring circumference below 30 meters. Cost optimization parameters include: (1) the number of superconducting bending elements in the ring, and (2) the central induction of the dipole. A machine design that features two superconducting dipoles in a single cryostat vacuum vessel is also discussed.
Date: June 1, 1995
Creator: Green, M.A. & Garren, A.A.
Partner: UNT Libraries Government Documents Department

Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source

Description: This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, The iron in the pole pieces is highly saturated, Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.
Date: June 1, 1995
Creator: Green, M. A. & Madura, D.
Partner: UNT Libraries Government Documents Department

The Mechanical and Thermal Design for the MICE Detector SolenoidMagnet System

Description: The detector solenoid for MICE surrounds a scintillating fiber tracker that is used to analyze the muon beam within the detector. There are two detector magnets for measuring the beam emittance entering and leaving the cooling channel that forms the central part of the experiment. The field in the region of the fiber detectors must be from 2.8 to 4 T and uniform to better than 1 percent over a volume that is 300 mm in diameter by 1000 mm long. The portion of the detector magnet that is around the uniform field section of the magnet consists of two short end coils and a long center coil. In addition, in the direction of the MICE cooling channel, there are two additional coils that are used to match the muon beam in the cooling channel to the beam required for the detectors. Each detector magnet module, with its five coils, will have a design stored-energy of about 4 MJ. Each detector magnet is designed to be cooled using three 1.5 W coolers. This report presents the mechanical and electrical parameters for the detector magnet system.
Date: September 26, 2004
Creator: Fabbricatore, P.; Farinon, S.; Perrella, M.; Bravar, U. & Green,M.A.
Partner: UNT Libraries Government Documents Department

The Mice Focusing Solenoids and their Cooling System

Description: This report describes the focusing solenoid for the proposed Muon Ionization Cooling Experiment (MICE) [1]. The focusing solenoid consists of a pair of superconducting solenoids that are on a common bobbin. The two coils, which have separate leads, may be operated in the same polarity or at opposite polarity. This report discusses the superconducting magnet design and the cryostat design for the MICE focusing module. Also discussed is how this superconducting magnet can be integrated with a pair of small 4.2 K coolers.
Date: May 7, 2004
Creator: Green, M.A.; Barr, G.; Lau, W.; Senanayake, R.S. & Yang, S.Q.
Partner: UNT Libraries Government Documents Department

Quench Protection for the MICE Cooling Channel CouplingMagnet

Description: The MICE coupling coil is fabricated from Nb-Ti, which hashigh quench propagation velocities within the coil in all directionscompared to coils fabricated with other superconductors such as niobiumtin. The time for the MICE coupling coil to become fully normal throughnormal region propagation in the coil is shorter than the time needed fora safe quench (as defined by a hot-spot temperature that is less than 300K). A MICE coupling coil quench was simulated using a code written at theInstitute of Cryogenics and Superconductive Technology (ICST) at theHarbin Institute of Technology (HIT). This code simulates quench backfrom the mandrel as well as normal region propagation within the coil.The simulations included sub-division of the coil. Each sub-division hasa back to back diodes and resistor across the coil. Current flows in theresistor when there is enough voltage across the coil to cause current toflow through the diodes in the forward direction. The effects of thenumber of coil sub-divisions and the value of the resistor across thesub-division on the quench were calculated with and without quench back.Sub-division of the coupling coil reduces the peak voltage to ground, thelayer-to-layer voltage and the magnet hot-spot temperature. Quench backreduces the magnet hot-spot temperature, but the peak voltage to groundand layer-to-layer voltage are increased, because the magnet quenchesfaster. The resistance across the coil sub-division affects both thehot-spot temperature and the peak voltage to ground.
Date: November 20, 2007
Creator: Green, M.A.; Wang, L. & Guo, X.L.
Partner: UNT Libraries Government Documents Department

Three dimensional field calculations for a Short Superconducting Dipole for the UCLA Ultra Compact Synchrotron

Description: The Ultra Compact Synchrotron (UCS), proposed for UCLA, is a compact 1.5 GeV electron light source with superconducting magnets to produce X rays with a critical energy of about 10 keV. The design physical length (cold length) for the dipole is 418 mm. The synchrotron requires that a uniform field be produced in a region that is 180 mm wide by 40 mm high by about 380 mm long. The end regions of the dipole should be short compared to the overall length of the dipole field region. A Vobly H type of dipole was selected for the synchrotron bending magnets. In order for each dipole to bend a 1.5 GeV electron beam 30 degrees, the central induction must be in the range of 6.4 to 6.9 T (depending on the dipole magnetic length). The pole width for the dipole was set so that over 90% of the X rays generated by the magnet can be extracted. The three dimensional field calculations were done using TOSCA. This report shows that a Vobly type of dipole will behave magnetically as a conventional water cooled iron dominated dipole. The uniformity of the integrated magnetic field can be controlled by varying the current in the shield coil with respect to the gap and cross-over coils. The two dimensional field in the center of the magnet can be tuned to be very uniform over a width of 110 to 120 mm. The three dimensional calculations show that the magnetic length along a particle track in the dipole is about 29 mm longer than the length of the iron pole pieces. This report will present the three dimensional design of the UCS Vobly dipole and the results of the field calculations for that magnet.
Date: August 1, 1998
Creator: Green, M.A. & Taylor, C.E.
Partner: UNT Libraries Government Documents Department

High field solenoids for muon cooling

Description: The proposed cooling system for the muon collider will consist of a 200 meter long line of alternating field straight solenoids interspersed with bent solenoids. The muons are cooled in all directions using a 400 mm long section liquid hydrogen at high field. The muons are accelerated in the forward direction by about 900 mm long, 805 MHz RF cavities in a gradient field that goes from 6 T to -6 T in about 300 mm. The high field section in the channel starts out at an induction of about 2 T in the hydrogen. As the muons proceed down the cooling channel, the induction in the liquid hydrogen section increases to inductions as high as 30 T. The diameter of the liquid hydrogen section starts at 750 mm when the induction is 2 T. As the induction in the cooling section goes up, the diameter of the liquid hydrogen section decreases. When the high field induction is 30 T, the diameter of the liquid hydrogen section is about 80 mm. When the high field solenoid induction is below 8.5 T or 9T, niobium titanium coils are proposed for generating .the magnetic field. Above 8.5 T or 9 T to about 20 T, graded niobium tin and niobium titanium coils would be used at temperatures down to 1.8 K. Above 20 T, a graded bybrid magnet system is proposed, where the high field magnet section (above 20 T) is either a conventional water cooled coil section or a water cooled Bitter type coil. Two types of superconducting coils have been studied. They include; epoxy impregnated intrinsically stable coils, and cable in conduit conductor (CICC) coils with helium in the conduit.
Date: September 8, 1999
Creator: Green, M.A.; Eyssa, Y.; Kenny, S.; Miller, J.R. & Prestemon, S.
Partner: UNT Libraries Government Documents Department

A Four Cell Lattice for the UCLA Compact Light Source Synchrotron

Description: The 1.5 GeV compact light source UCS proposed for UCLA must fit into a shielded vault that is 9.144 meters (30 feet) wide. In order for the machine to fit into the allowable space, the ring circumference must be reduced 36 meters, the circumference of the six cell lattice, to something like 26 or 27 meters. The four cell lattice described in this report has a ring circumference of 27.0 meters.
Date: March 12, 1999
Creator: Garren, A.A. & Green, M.A.
Partner: UNT Libraries Government Documents Department

The design and construction of a gradient solenoid for the high powered RF cavity experiment for the muon collider

Description: This report describes the construction and test of a split solenoid that has a warm bore of 440 mm and a cryostat length of 1088 mm. (A 750 mm section contains the magnetic field.) When the coils are hooked so the fields are additive, the central induction is 5.0 T at its design current. When the coils are hooked so that the fields are in opposition, the induction at the center of the solenoid is zero and the peak induction on the solenoid axis is {+-}3.7 T. The on-axis induction gradient is 25 T per meter when the coils are hooked in opposition. When the coils are operated at their design currents in opposition, the force pushing the two coils apart is about 3 MN. The force pushing the coils apart is carried by the aluminum coil mandrel and a solid aluminum sheath outside of the superconducting winding. The coil was wound as a wet lay-up coil using alumina filled epoxy (Stycast). A layer of hard aluminum wire wound on the outside of the superconducting coil carries some of the hoop forces and limits the strain so that training does not occur. At design current, at both polarities, the peak induction in the windings is about 7 T. This report describes the solenoid magnet system and its construction.
Date: September 5, 1999
Creator: Green, M.A.; Chen, J.Y. & Wang, S.T.
Partner: UNT Libraries Government Documents Department

Estimating the Cost of Superconducting Magnets and the Refrigerators Needed to Keep Them Cold

Description: The cost of superconducting magnets and the refrigerators needed to keep them cold can be estimated if one knows the magnet stored energy and the amount of refrigeration needed. This report updates the cost data collected over 20 years ago by Strobridge and others. Early cost data has been inflated into 1991 dollars and data on newer superconducting magnets has been added to the old data. The cost of superconducting magnets has been correlated with stored energy and field-magnetic volume product. The cost of the helium refrigerator cold box and the compressors needed to keep the magnet cold can be correlated with the refrigeration generated at 4.5K. The annual cost of 4.5K refrigeration can be correlated with 4.5K refrigeration and electrical energy cost.
Date: June 1, 1991
Creator: Green, M. A.; Byrns, R. & St. Lorant, S. J.
Partner: UNT Libraries Government Documents Department