9 Matching Results

Search Results

Advanced search parameters have been applied.

Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

Description: One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, ...
Date: June 14, 2004
Creator: Chen, Fanqing & Gerion, Daniele
Partner: UNT Libraries Government Documents Department

Quantum Dots-based Reverse Phase Protein Microarray

Description: CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP) catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R{sup 2} = 0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.
Date: July 15, 2005
Creator: Shingyoji, Masato; Gerion, Daniele; Pinkel, Dan; Gray, Joe W. & Chen, Fanqing
Partner: UNT Libraries Government Documents Department

Sorting fluorescent nanocrystals with DNA

Description: Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.
Date: December 10, 2001
Creator: Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M. & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Nanoplasmonic molecular ruler for nuclease activity and DNAfootprinting

Description: We have constructed a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of DNA length changes and perform DNA footprinting. The ruler was created by tethering double-stranded DNA to single Au nanoparticles. The scattering spectra of Au-DNA nanoconjugates showed red-shifted peak plasmon resonance wavelength dependent on DNA length, which can be measured with sub-nanometer axial resolution, averaging {approx}1.24 nm peak wavelength shift per DNA base pair. The spectra of individual Au-DNA nanoconjugates in the presence of nuclease showed a time-resolved dependence on the reaction dynamics, allowing quantitative, kinetic and real-time measurement of nuclease activity. The ruler was further developed into a new DNA footprinting platform. We showed the specific binding of a protein to DNA and the accurate mapping of its footprint. This work promises a very fast and convenient platform for mapping DNA-protein interactions, for nuclease activity monitoring, and for other DNA size-based methods.
Date: August 15, 2006
Creator: Chen, Fanqing Frank; Liu, Gang L.; Yin, Yadong; Gerion, Daniele; Kunchakarra, Siri; Mukherjee, Bipasha et al.
Partner: UNT Libraries Government Documents Department

Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

Description: In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.
Date: May 29, 2006
Creator: Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato et al.
Partner: UNT Libraries Government Documents Department

Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots

Description: Water-soluble, highly fluorescent, silanized semiconductor nanocrystals with different surface charges were synthesized. To covalently attach the nanocrystals to biological macromolecules with a variety of mild coupling chemistries, the outermost siloxane shells were derivatized with thiol, amino, or carboxyl functional groups. Single- or double-stranded DNA was coupled to the nanocrystal surfaces by using commercially available bifunctional cross-linker. Conjugation had little effect on the optical properties of the nanocrystals, and the resulting conjugates were more stable than previously reported systems. By using the strategies developed in this study, most biomolecules can be covalently coupled to semiconductor nanocrystals. These nanocrystal-DNA conjugates promise to be a versatile tool for fluorescence imaging and probing of biological systems.
Date: September 10, 2001
Creator: Parak, Wolfgang J.; Gerion, Daniele; Zanchet, Daniela; Waerz, Anke S.; Micheel, Christine; Williams, Shara C. et al.
Partner: UNT Libraries Government Documents Department