8 Matching Results

Search Results

Advanced search parameters have been applied.

High resolution data acquisition

Description: A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock pulse train and analog circuitry for generating a triangular wave synchronously with the pulse train. The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.
Date: December 31, 1992
Creator: Thornton, G. W. & Fuller, K. R.
Partner: UNT Libraries Government Documents Department


Description: Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered ...
Date: January 9, 2013
Creator: Fuller, K.; Smith, Robert H. Jr. & Goergen, Charles R.
Partner: UNT Libraries Government Documents Department

Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver

Description: The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.
Date: June 1, 1997
Creator: Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L. & Fuller, K.
Partner: UNT Libraries Government Documents Department

CO{sub 2} dial transmitter/receiver noise characterization and related correlated noise issues

Description: Our approach concerning the development of hard target return CO{sub 2} DIAL transmitter/receiver systems is two phased- (i) through analysis and experiment, develop a fundamental understanding of the transmitter/receiver physics specific to DIAL systems and (ii) apply these fundamentals in the development of optimal performance DIAL transmitter/receiver systems. We present our progress and results towards these objectives with the following topics addressed: A general overview of the DIAL transmitter/receiver system characterization effort with a focus on transceiver noise processes. The effects of correlated noise on DIAL performance, especially those effecting statistical convergence over long sample structures, is , introduced. And, preliminary measurements of a low-noise, ``white`` receiver prototype are presented.
Date: February 1, 1996
Creator: Cooke, B.; Schmitt, M.; Goeller, R.; Czuchlewski, S.; Fuller, K.; Olivas, N. et al.
Partner: UNT Libraries Government Documents Department

Fast Gradient Elution Reversed-Phase HPLC with Diode-Array Detection as a High Throughput Screening Method for Drugs of Abuse

Description: A new approach has been developed by modifying a conventional gradient elution liquid chromatograph for the high throughput screening of biological samples to detect the presence of regulated intoxicants. The goal of this work was to improve the speed of a gradient elution screening method over current approaches by optimizing the operational parameters of both the column and the instrument without compromising the reproducibility of the retention times, which are the basis for the identification. Most importantly, the novel instrument configuration substantially reduces the time needed to re-equilibrate the column between gradient runs, thereby reducing the total time for each analysis. The total analysis time for each gradient elution run is only 2.8 minutes, including 0.3 minutes for column reequilibration between analyses. Retention times standard calibration solutes are reproducible to better than 0.002 minutes in consecutive runs. A corrected retention index was adopted to account for day-to-day and column-to-column variations in retention time. The discriminating power and mean list length were calculated for a library of 47 intoxicants and compared with previous work from other laboratories to evaluate fast gradient elution HPLC as a screening tool.
Date: December 30, 2005
Creator: Carr, Peter W.; Fuller, K.M.; Stoll, D.R.; Steinkraus, L.D.; Pasha, M.S. & Hardin, Glenn G.
Partner: UNT Libraries Government Documents Department

CdZnTe gamma ray spectrometer for orbital gamma ray spectroscopy.

Description: We present the design and analysis of a new gamma ray spectrometer for planetary science that uses an array of CdZnTe detectors to achieve the detection efficiency needed for orbital measurements. The use of CdZnTe will provide significantly improved pulse height resolution relative to scintillation-based detectors, with commensurate improvement in the accuracy of elemental abundances determined by gamma ray and neutron spectroscopy. The spectrometer can be flown either on the instrument deck of the spacecraft or on a boom. For deck-mounted systems, a BGO anticoincidence shield is included in the design to suppress the response of the CdZnTe detector to gamma rays that originate in the spacecraft. The BGO shield also serves as a backup spectrometer, providing heritage from earlier planetary science missions and reducing the risk associated with the implementation of new technology.
Date: January 1, 2001
Creator: Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Fuller, K. R. (Kenneth R.); Storms, S. A. (Steven A.); Soldner, S. A.; Lawrence, David J. (David Jeffery), et al.
Partner: UNT Libraries Government Documents Department

CdZnTe gamma ray spectrometer for orbital planetary missions

Description: Knowledge of surface elemental composition is needed to understand the formation and evolution of planetary bodies. Gamma rays and neutrons produced by the interaction of galactic cosmic rays with surface materials can be detected from orbit and analyzed to determine composition. Using gamma ray spectroscopy, major rock forming elements such as Fe, Ti, Al, Si, Mg, and Ca can be detected. The accuracy of elemental abundance is limited by the resolution of the spectrometer. For space missions, scintillators such as BGO and NaI(Tl) have been used for gamma ray spectroscopy. New planetary science missions are being planned to explore Mars, Mercury, the asteroid belt, and the outer planets. Significant improvements in the pulse height resolution relative to scintillation detectors can be made using CdZnTe, a new room temperature detector technology. For an orbiting instrument, a CdZnTe detector at least 16 cm{sup 3} in size is needed. A 4 x 4 array of 1-cm{sup 3} coplanar grid detectors can be manufactured that meets requirements for resolution and counting efficiency. The array will shielded from gamma rays produced in the spacecraft by a BGO detector. By improving pulse height resolution by a factor of three at low energy, the CdZnTe detector will be able to make accurate measurements of elements that are currently difficult to measure using scintillation technology. The BGO shield will provide adequate suppression of gamma rays originating in the spacecraft, enabling the gamma ray spectrometer to be mounted on the deck of a spacecraft. To test this concept, we are constructing a flight qualified, prototype CdZnTe detector array. The prototype consists of a 2 x 2 array of coplanar grid detectors. We will present the results of mechanical and electronic testing and radiation damage tests, and the performance of the array for gamma ray spectroscopy.
Date: January 1, 2001
Creator: Feldman, W. C. (William C.); Storms, S. A. (Steven A.); Fuller, K. R. (Kenneth R.); Moss, C. E. (Calvin E.); Browne, M. C. (Michael C.); Lawrence, David J. (David Jeffery), et al.
Partner: UNT Libraries Government Documents Department