21 Matching Results

Search Results

Advanced search parameters have been applied.

The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

Description: OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.
Date: August 1, 1996
Creator: Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Mitigation options for accidental releases of hazardous gases

Description: The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies include: secondary confinement, deinventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented.
Date: May 1, 1995
Creator: Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Cross-flow versus counter-current flow packed-bed scrubbers: a mathematical analysis

Description: Little is known about the mass transfer properties of packing media exposed to a crossflow of gas and liquid, whereas there is abundant information related to counter-current scrubbers. This paper presents a theoretical analysis of mass transfer and hydrodynamics in cross- flow packed bed scrubbers and compares those with information available for counter current towers, so that the first can be evaluated and/or designed based on data derived for the second. Mathematical models of mass transfer in cross-flow and counter- current packed bed scrubbers are presented. From those, one can predict the removal effectiveness of a crossflow scrubber from the number of transfer units (NTU) calculated for a similar counterflow operation; alternatively, when the removal effectiveness in counterflow is known, one can predict the corresponding NTU in crossflow.
Date: February 1, 1996
Creator: Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

Description: Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.
Date: March 30, 2007
Creator: Fthenakis, V. M.; Kim, H. C. & Wang, W.
Partner: UNT Libraries Government Documents Department

Model institutional infrastructures for recycling of photovoltaic modules

Description: This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.
Date: July 1, 1996
Creator: Moscowitz, P.D.; Reaven, J. & Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Mitigation of unconfined releases of hazardous gases via liquid spraying

Description: The capability of water sprays in mitigating clouds of hydrofluoric acid (HF) has been demonstrated in the large-scale field experiments of Goldfish and Hawk, which took place at the DOE Nevada Test Site. The effectiveness of water sprays and fire water monitors to remove HF from vapor plume, has also been studied theoretically using the model HGSPRAY5 with the near-field and far-field dispersion described by the HGSYSTEM models. This paper presents options to select and evaluate liquid spraying systems, based on the industry experience and mathematical modeling.
Date: February 1, 1997
Creator: Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Approaches for preventing and mitigating accidental gaseous chemical releases

Description: This paper presents a review of approaches to prevent and mitigate accidental releases of toxic and flammable gases. The prevention options are related to: choosing safer processes and materials, preventing initiating events, preventing or minimizing releases, and preventing human exposures. the mitigation options include: secondary confinement, de-inventory, vapor barriers, and water sprays/monitors. Guidelines for the design and operation of effective post-release mitigation systems are also presented.
Date: December 31, 1996
Creator: Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Environmental, health and safety issues related to commercializing CuInSe{sub 2}-based photovoltaics

Description: Photovoltaics technology is rapidly evolving towards a new generation of low-cost thin film technologies. One of the most promising materials in this new generation is copper indium selenide (CuInSe{sub 2} or CIS). As with any new material, successful commercialization of CIS photovoltaic (PV) technology will require attention to environmental, health and safety issues, including consideration of the sources, usage, and end-of-product-life disposal and/or recycling of the constituent materials. This work focuses on three specific environmental, health and safety (EH and S) issues related to CIS PV: (1) economics are analyzed to determine their impact on materials use and re-use; (2) Federal and California State environmental disposal and waste handling regulations are analyzed to evaluate their impact on PV module manufacturing and end-of-life module handling; and (3) the logistics and economics of product recycling and waste disposal by industries with comparable EH and S issues are examined to quantify the corresponding options available for handling, disposing of and/or recycling manufacturing by-products and end-of-life modules.
Date: July 1, 1996
Creator: Eberspacher, C.; Fthenakis, V.M. & Moskowtiz, P.D.
Partner: UNT Libraries Government Documents Department

Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

Description: This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.
Date: March 1, 1994
Creator: DePhillips, M.P.; Fthenakis, V.M. & Moskowitz, P.D.
Partner: UNT Libraries Government Documents Department

Environmental issues related to commercialization of CulnSe{sub 2}- based photovoltaics

Description: One of the most promising materials for low-cost thin film photovoltaic cells is copper indium selenide (CuInSe{sub 2} or CIS). As with any new material, successful commercialization of CIS photovoltaic (PV) technology will require attention to environmental issues related to the sources of raw materials, their usage, and the disposal and/or recycling of products at the end of their useful life. This paper focuses on three specific environmental issues related to CIS technology: (i) Economics of the use and re-use of materials; (ii) regulations on environmental disposal and waste handling, and (iii) logistics and economics of recycling and disposing of products by industries faced with comparable environmental issues.
Date: July 1, 1996
Creator: Eberspacher, C.; Fthenakis, V.M. & Moskowitz, P.D.
Partner: UNT Libraries Government Documents Department

Modelling absorption and dilution of unconfined releases of hazardous gases by water curtains or monitors

Description: OSHA Process Safety Management guidelines suggest that a facility operator investigate and document a plan for installing systems to detect, contain, or mitigate accidental releases if such systems are not already in place. In addition, proposed EPA 112(r) regulations would require such analysis. This paper illustrates how mathematical modelling can aid such an evaluation and describes some recent enhancements of the HGSPRAY model: (1) Adding algorithms for modeling NH{sub 3} and LNG mitigation; (2) Modeling spraying of releases with fire water monitors encircling the point of release; (3) Combining wind tunnel modeling with mathematical modeling; and (4) Linking HGSPRAY and BEGADAS. Case cases are presented as examples of how HGSPRAY can aid the design of water spray systems for initiation of toxic gases (e.g., BF, NH,) or dilution/dispersion of flammable vapors (e.g., LNG).
Date: May 1, 1995
Creator: Fthenakis, V.M.; Blewitt, D.N. & Hague, W.J.
Partner: UNT Libraries Government Documents Department

An update on environmental, health and safety issues of interest to the photovoltaic industry

Description: There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.
Date: January 1, 1992
Creator: Moskowitz, P.D.; Viren, J. & Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

Description: To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.
Date: July 1, 1992
Creator: Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D. & Fthenakis, V.M.
Partner: UNT Libraries Government Documents Department

An assessment of mercury emissions and health risks from a coal-fired power plant

Description: Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.
Date: December 1, 1994
Creator: Fthenakis, V. M.; Lipfert, F. & Moskowitz, P.
Partner: UNT Libraries Government Documents Department

Numerical simulations of turbulent flow fields caused by spraying of water on large releases of hydrogen fluoride

Description: The effectiveness of water sprays in absorbing HF releases was recently demonstrated in extended laboratory and field tests. In this paper, computer simulations are presented of the Hawk, Nevada Test Site, series of field tests. The model used, HFSPRAY, is a Eulerean/Lagrangian model which simulates the momentum, mass and energy interactions between a water spray and a turbulent plume of HF in air; the model can predict the flow velocities, temperature, water vapor, and HF concentration fields in two-dimensional large- geometries for spraying in any direction, (i.e., down-flow, inclined-down-flow, up-flow, and co-current horizontal flow). The model was validated against recent data on spraying of water on large releases of HF. 17 refs., 11 figs., 4 tabs.
Date: May 1, 1991
Creator: Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)) & Schatz, K.W. (Mobil Research and Development Corp., Princeton, NJ (United States))
Partner: UNT Libraries Government Documents Department

Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems

Description: This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds -- cadmium telluride (CdTe) and copper indium diselenide (CuInSe{sub 2}). More specifically, this paper summarizes the toxicological information on cadmium (Cd) compounds; evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. Nevertheless, concern about cadmium hazards should continue to be emphasized to ensure that health, safety and environmental issues are properly managed. At the same time, the potential role that these systems can play in ameliorating some important health and environmental hazards related to other energy systems should not be ignored. 27 refs., 5 figs., 2 tabs.
Date: December 1, 1989
Creator: Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (USA)) & Zweibel, K. (Solar Energy Research Inst., Golden, CO (USA))
Partner: UNT Libraries Government Documents Department

Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems

Description: This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds--cadmium telluride (CdTe) and copper indium deselenide (CuInSe{sub 2}). More specifically, this paper summarized the toxicological information on cadmium (Cd) compounds;evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. 26 refs., 5 figs., 2 tabs.
Date: January 1, 1990
Creator: Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (USA)) & Zweibel, K. (Solar Energy Research Inst., Golden, CO (USA))
Partner: UNT Libraries Government Documents Department

Three multimedia models used at hazardous and radioactive waste sites

Description: Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.
Date: February 1, 1996
Creator: Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O. et al.
Partner: UNT Libraries Government Documents Department

An overview of safety assessment, regulation, and control of hazardous material use at NREL

Description: This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting in unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.
Date: January 1, 1992
Creator: Nelson, B.P.; Crandall, R.S. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D. & Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))
Partner: UNT Libraries Government Documents Department

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

Description: The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.
Date: January 1, 1991
Creator: Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)) & Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))
Partner: UNT Libraries Government Documents Department

Modeling of water spraying of field releases of hydrogen fluoride

Description: The effectiveness of water sprays to absorb HF releases has been recently demonstrated by extended laboratory and field tests. In this paper computer simulations are presented of the Hawk, Nevada Test Site, series of field tests, along with parametric studies of several cases which have not been studied in the field. The model used in these simulations, HFSPRAY, treats the gas-phase as an Eulerean fluid whereas the spray is described according to the Lagrangian approach by a finite number of drops of varying size and trajectory. HFSPRAY simulates the momentum, mass and energy interactions between a water spray and a turbulent plume of HF in air; it is capable of predicting the flow velocities, temperature, water vapor and HF concentration fields in two-dimensional large-geometries, for spraying in any direction, (i.e., down-flow, inclined-down-flow, up-flow, and co-current horizontal flow). 15 refs., 21 figs.
Date: October 14, 1990
Creator: Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Schatz, K.W. (Mobil Research and Development Corp., Princeton, NJ (United States)) & Zakkay, V. (New York Univ., NY (United States). Dept. of Applied Science)
Partner: UNT Libraries Government Documents Department