38 Matching Results

Search Results

Advanced search parameters have been applied.

A Review of Metal Concentrations Measured in Surface Soil Samples Collected on and Around the Hanford Site

Description: The data used in this report was collected by two separate projects. The Surface Environmental Surveillance Project collected routine samples in 2008 at 41 locations on and around the Hanford Site, and had them analyzed for metals in addition to the normal radiological constituents. In 2004 and 2005, soil samples were collected at 117 locations on the Hanford Reach National Monument (HRNM) in support of the radiological release of that property. In 2008, archived HRNM soil samples were analyzed for metals to supplement the radiological analyses. Concentration results for 30 individual metals were generated by the analytical methods. Selenium and antimony were not measured at detectable concentrations in most of the samples. Mercury was detected in about half of the samples analyzed. All other constituents were measured at detectable concentrations in nearly all samples analyzed. The average concentrations measured in this study were well below the soil cleanup levels for unrestricted land use established by the Model Toxics Control Act (MTCA). In addition to the average concentration being less than the benchmark, the 90th percentile concentration was also lower than the benchmark for the metals included in the MTCA. The results indicate that the measured concentrations of metals in surface soil were within the expected natural range of concentrations.
Date: July 27, 2009
Creator: Fritz, Brad G.
Partner: UNT Libraries Government Documents Department

Soil Sampling and Analysis Plan for the McGee Ranch-Riverlands and North Slope Units of the Hanford Reach National Monument

Description: This document describes soil sampling that will be performed by Pacific Northwest National Laboratory's Surface Environmental Surveillance Project on two units of the Hanford Reach National Monument: the McGee Ranch-Riverlands Unit (Riverlands Unit) and the North Slope made up of the Saddle Mountain Unit and the Wahluke Slope Unit. This sampling fulfills a U.S. Department of Energy requirement to evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5 prior to radiological release of the property.
Date: December 27, 2004
Creator: Fritz, Brad G. & Dirkes, Roger L.
Partner: UNT Libraries Government Documents Department

Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

Description: Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site. Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location ...
Date: July 29, 2011
Creator: Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G. & Bisping, Lynn E.
Partner: UNT Libraries Government Documents Department

Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

Description: The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.
Date: April 1, 2007
Creator: Fritz, Brad G.; Dirkes, Roger L. & Napier, Bruce A.
Partner: UNT Libraries Government Documents Department

Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the McGee Ranch-Riverlands and North Slope Units of the Hanford Reach National Monument

Description: The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S. Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands ...
Date: September 21, 2007
Creator: Fritz, Brad G.; Dirkes, Roger L. & Napier, Bruce A.
Partner: UNT Libraries Government Documents Department

Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

Description: This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.
Date: January 1, 2009
Creator: Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda & Poston, Ted M.
Partner: UNT Libraries Government Documents Department

Historical Site Assessment: Select Hanford Reach National Monument Lands --

Description: Consistent with its current mission, the U.S. Department of Energy Richland Operations Office (DOE-RL) plans to transfer ownership of large tracts of the Hanford Site in the next 3 to 5 years. Specifically, DOE-RL plans to transfer ownership of a large portion of the Hanford Reach National Monument to the U.S. Fish and Wildlife Service (FWS). Before DOE can transfer ownership of these tracts, a radiological clearance of the lands must be performed. Fluor Hanford, Inc., (FHI) is responsible for the radiological clearance for DOE-RL. Pacific Northwest National Laboratory (PNNL) is supporting FHI on this effort through various work agreements.
Date: July 31, 2003
Creator: Fritz, Brad G.; Dirkes, Roger L.; Poston, Ted M. & Hanf, Robert W.
Partner: UNT Libraries Government Documents Department

Evaluation of Airflow Patterns in the Transfer Area of the 105 KE Basin

Description: This report is a qualitative study of airflow patterns within a building at the transfer area of the 105 KE Basin on the Hanford Site in Washington State. The purpose of the study was to determine the appropriate location for air monitoring equipment.
Date: March 7, 2003
Creator: Fritz, Brad G.; Khan, Fenton & Mendoza, Donaldo P.
Partner: UNT Libraries Government Documents Department

Methods for Assessing the Relative Amounts of Groundwater Discharge into the Columbia River and Measurement of Columbia River Gradients at the Hanford Site’s 300 Area

Description: This report summarizes FY08 activities conducted under the Remediation and Closure Sciences Project.
Date: September 30, 2008
Creator: Fritz, Brad G.; Mackley, Rob D.; Arntzen, Evan V.; Mendoza, Donaldo P. & Patton, Gregory W.
Partner: UNT Libraries Government Documents Department

100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

Description: Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.
Date: September 1, 2010
Creator: Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E. & Williams, Mark D.
Partner: UNT Libraries Government Documents Department

100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

Description: 100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization INTERIM LETTER REPORT
Date: December 16, 2009
Creator: Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E. & Williams, Mark D.
Partner: UNT Libraries Government Documents Department

100-NR-2 Apatite Treatability Test: An update on Barrier Performance

Description: This report updates a previous report covering the performance of a permeable reactive barrier installed at 100N. In this report we re-evaluate the results after having an additional year of performance monitoring data to incorporate.
Date: May 1, 2011
Creator: Fritz, Brad G.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Szecsody, James E. & Williams, Mark D.
Partner: UNT Libraries Government Documents Department

Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

Description: Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity.
Date: November 16, 2012
Creator: Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Horner, Jacob A.; Johnson, Christian D. et al.
Partner: UNT Libraries Government Documents Department

Final Technical Report: Development of the DUSTRAN GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion

Description: Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.
Date: May 1, 2007
Creator: Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G. et al.
Partner: UNT Libraries Government Documents Department

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

Description: This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.
Date: December 27, 2012
Creator: Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G. & Poston, Theodore M.
Partner: UNT Libraries Government Documents Department

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

Description: Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision ...
Date: November 12, 2012
Creator: Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M. & Antonio, Ernest J.
Partner: UNT Libraries Government Documents Department

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

Description: This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.
Date: May 25, 2010
Creator: Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M. & Rhoads, Kathleen
Partner: UNT Libraries Government Documents Department

DUSTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System

Description: The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the U.S. Department of Defense in addressing particulate air quality issues at military training and testing ranges. This manual documents the DUSTRAN modeling system and includes installation instructions, a user’s guide, and detailed example tutorials.
Date: September 22, 2006
Creator: Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G. et al.
Partner: UNT Libraries Government Documents Department

Investigation of the Hyporheic Zone at the 300 Area,Hanford Site

Description: The Remediation Task of the Science and Technology (S&T) Project is intended to provide research to meet several objectives concerning the discharge of groundwater contamination into the river at the 300 Area of the Hanford Site. This report serves to meet the research objectives by developing baseline data for future evaluation of remedial technologies, evaluating the effects changing river stage on near-shore groundwater chemistry, improving estimates of contaminant flux to the river, providing estimates on the extent of contaminant discharge areas along the shoreline, and providing data to support computer models used to evaluate remedial alternatives. This report summarizes the activities conducted to date and provides an overview of data collected through July 2006. Recent geologic investigations (funded through other U. S. Department of Energy (DOE) programs) have provided a more complete geologic interpretation of the 300 Area and a characterization of the vertical extent of uranium contamination. Extrapolation of this geologic interpretation into the hyporheic zone is possible, but there is little data to provide corroboration. Penetration testing was conducted along the shoreline to develop evidence to support the extrapolation of the mapping of the geologic facies. In general, this penetration testing provided evidence supporting the extrapolation of the most recent geologic interpretation, but it also provided some higher resolution detail on the shape of the layer than constrains contaminant movement. Information on this confining layer will provide a more detailed estimate of the area of river bed that has the potential to be impacted by uranium discharge to the river from groundwater transport. Water sampling in the hyporheic zone has provided results that illustrate the degree of mixing that occurs in the hyporheic zone. Uranium concentrations measured at individual sampling locations can vary by several orders of magnitude depending on the river and near-shore aquifer elevations. It is ...
Date: October 1, 2007
Creator: Fritz, Brad G.; Kohn, Nancy P.; Gilmore, Tyler J.; McFarland, Doug; Arntzen, Evan V.; Mackley, Rob D. et al.
Partner: UNT Libraries Government Documents Department

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

Description: The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.
Date: June 1, 2007
Creator: Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R. et al.
Partner: UNT Libraries Government Documents Department