50 Matching Results

Search Results

Advanced search parameters have been applied.

Final Report: Ionization chemistry of high temperature molecular fluids

Description: With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} and mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.
Date: February 26, 2007
Creator: Fried, L E
Partner: UNT Libraries Government Documents Department

The Reactivity of Energetic Materials At Extreme Conditions

Description: Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Although the history of HE materials is long, their condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In modeling HE materials there is a need to better understand the physical, chemical, and mechanical behaviors from fundamental theoretical principles. Among the quantities of interest in plastic-bonded explosives (PBXs), for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the polymeric binders. These properties are needed (as functions of stress state and temperature) for the development of improved micro-mechanical models, which represent the composite at the level of grains and binder. Improved micro-mechanical models are needed to describe the responses of PBXs to dynamic stress or thermal loading, thus yielding information for use in developing continuum models. Detailed descriptions of the chemical reaction mechanisms of condensed energetic materials at high densities and temperatures are essential for understanding events that occur at the reactive front under combustion or detonation conditions. Under shock conditions, for example, energetic materials undergo rapid heating to a few thousand degrees and are subjected to a compression of hundreds of kilobars, resulting in almost 30% volume ...
Date: October 23, 2006
Creator: Fried, L E
Partner: UNT Libraries Government Documents Department

Exp6-polar thermodynamics of dense supercritical water

Description: We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.
Date: December 13, 2007
Creator: Bastea, S & Fried, L E
Partner: UNT Libraries Government Documents Department

First principles simulation of a superionic phase of hydrogen fluoride (HF) at high pressures and temperatures

Description: The authors have conducted Ab initio molecular dynamics simulations of hydrogen fluoride (HF) at pressures of 5-66 GPa along the 900 K isotherm. They predict a superionic phase at 33 GPa, where the fluorine atoms are fixed in a bcc lattice while the hydrogen atoms diffuse rapidly with a diffusion constant of between 2 x 10{sup -5} and 5 x 10{sup -5} cm{sup 2}/s. They find that a transformation from asymmetric to symmetric hydrogen bonding occurs in HF at 66 GPa and 900 K. With superionic HF they have discovered a model system where symmetric hydrogen bonding occurs at experimentally achievable conditions. Given previous results on superionic H{sub 2}O[1,2,3] and NH{sub 3}[1], they conclude that high P,T superionic phases of electronegative element hydrides could be common.
Date: April 10, 2006
Creator: Goldman, N & Fried, L E
Partner: UNT Libraries Government Documents Department

Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals

Description: Careful thermometric analysis (TMA) on powders of micron-sized triamino-trinitrobenzene (TATB) crystallites are shown to display irreversible growth in volume when subjected to repeated cycles of heating and cooling. Such behavior is counter-intuitive to typical materials response to simulated annealing cycles in atomic-scale molecular dynamics. However, through coarse-grained simulations using a mesoscale Hamiltonian we quantitatively reproduce irreversible growth behavior in such powdered material. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy, and is mediated by particles much smaller than the average crystallite size.
Date: May 5, 2006
Creator: Gee, R; Maiti, A & Fried, L
Partner: UNT Libraries Government Documents Department

Water Under the Extreme Conditions of Planetary Interiors: Symmetric Hydrogen Bonding in the Superionic Phase

Description: The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34 -115 GPa) along the 2000K isotherm.We find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. We find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character.
Date: August 29, 2005
Creator: Goldman, N & Fried, L E
Partner: UNT Libraries Government Documents Department

Kinetics of PBX9404 Aging

Description: PBX 9404 is an early formulation of HMX from which we can learn about the effects of aging in the weapons stockpile. Of particular interest is the presence of 3% nitrocellulose in PBX 9404 as an energetic binder. Nitrocellulose is used pervasively in smokeless gunpowders and was formerly used extensively in the film and art preservation industries. It is well known that nitrocellulose decomposes autocatalytically, and stabilizers, such as the diphenylamine used in PBX 9404, are used to retard its decomposition. Even so, its lifetime is still limited, and the reactions eventually leading to catastrophic autocatalysis are still not understood well despite years of work. In addition to reducing the available energy in the explosive, degradation of nitrocellulose affects the mechanical properties of the pressed PBX 9404 parts by the associated reduction in molecular weight, which reduces the strength of the binder. A structural formula for a monomer of the nitrocellulose used in PBX 9404 is shown. The initial nitration level is 2.3 of 3.0 possible sites, and they have different reactivities. Degradation of nitrocellulose affects many properties. As an aid in examining historical chemical analysis data, several measures of degradation are given for the simple replacement of a nitro group with a hydrogen. The weight percent of nitrocellulose remaining for an initial concentration of 3% as used in PBX 9404 is also given. Of course, the real degradation reaction is more complicated, including chain scission and crosslinking reactions giving other gas species. During the course of this work, we spent considerable time addressing the question, ''Why is PBX 9404 blue?'' There was actually considerable controversy in the color evolution with aging, and the situation was clarified by Ben Richardson at Pantex. Workers there assured us that PBX 9404 starts with an ivory color. Drying the prill prior to pressing ...
Date: September 11, 2006
Creator: Burnham, A K & Fried, L E
Partner: UNT Libraries Government Documents Department

Recent Advances in Modeling Hugoniots with Cheetah

Description: We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Date: July 26, 2005
Creator: Glaesemann, K R & Fried, L E
Partner: UNT Libraries Government Documents Department

Water Under the Extreme Conditions of Planetary Interiors: Symmetric Hydrogen Bonding in the Superionic Phase

Description: The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000 K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character.
Date: July 8, 2005
Creator: Goldman, N & Fried, L E
Partner: UNT Libraries Government Documents Department

Structure and Evolution of Ordered Domains in Deeply Quenched Polyrthelene Melt

Description: Solidification of polymeric materials, a complex process in which the entangled polymer melt becomes a composite of amorphous and crystalline domains, strongly depends on how the melt is cooled below its crystallization temperature. If cooling is at moderate rates, the most common and well. understood mechanism is via nucleation and growth of spherulites, but special cases exist where crystallization is preceded by a pre pre-transition state induced by density fluctuations. Such multi-step crystallization scenarios are suggested by many experiments, and recent theoretical and simulation work. Via energetic and geometric analyses, we have examined the structure of mesomorphic domains and the dynamics of their formation and evolution, including atomic scale details of molecular addition to ordered domains, as well as particle dynamics in the system, including high mobility jumps in the ordered domains at wavelengths matching the monomer spacing.
Date: April 25, 2007
Creator: Lacevic, N; Fried, L & Gee, R
Partner: UNT Libraries Government Documents Department

X-ray scattering intensities of water at extreme pressure and temperature

Description: We have calculated the coherent x-ray scattering intensity of several phases of water at 1500 and 2000 K under high pressure, using ab initio Density Functional Theory (DFT). Our calculations span the molecular liquid, ice VII, and superionic solid phases, including the recently predicted symmetrically hydrogen bonded region of the superionic phase. We show that wide angle x-ray scattering intensity could be used to determine phase boundaries between these high pressure phases, and we compare the results for ice VII and superionic water. We compute simulated spectra and provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We show that our modifed atomic form factors allow for a nearly exact comaprison to the total x-ray scattering intensities calculated from DFT. Finally, we analyze the effect our new form factors have on determination of the oxygen-oxygen radial distribution function.
Date: January 3, 2007
Creator: Goldman, N & Fried, L E
Partner: UNT Libraries Government Documents Department

Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation

Description: Water (H{sub 2}O) and nitrogen (N{sub 2}) are major detonation products of high explosives and it has long been conjectured that they may phase segregate at high enough temperatures and pressures to influence detonation properties of common explosives. We analyze the phase diagram of H{sub 2}O-N{sub 2} mixtures using a thermodynamic theory for polar-nonpolar mixtures and find that phase segregation is unlikely to occur above approximately 1600K. Therefore, H{sub 2}O-N{sub 2} immiscibility is not likely to be relevant for detonation predictions. We propose instead that the high pressure ionic dissociation of water plays an important role in detonation, and model it using a new ionic thermodynamics. We employ this model in chemical equilibrium calculations of standard high explosives, e.g. PETN, HMX and RDX, and find that it performs very well under a wide range of conditions. Thus, although it may require further development, it is likely that explicitly ionic thermodynamics will become a standard tool for explosives modeling.
Date: March 9, 2010
Creator: Bastea, S & Fried, L E
Partner: UNT Libraries Government Documents Department

Molecular dynamics simulation of shocks in porous TATB crystals

Description: We report molecular dynamics results on the shock structure of 2-D crystals of triaminotrinitrobenzene (TATB). We find that the shock front broadens to approx. 30 nm in materials with a 20% random void distribution. As expected from bulk experiments, the shock velocity decreases with increasing porosity and the temperature behind the shock front increases with increasing porosity. Shock equilibration times increase from 1 ps to greater than 10 ps.
Date: August 1, 1995
Creator: Fried, L.E. & Tarver, C.
Partner: UNT Libraries Government Documents Department

CHEETAH: A next generation thermochemical code

Description: CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0. We have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. We find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. CHEETAH will make the use of thermochemical codes more attractive to practical explosive formulators. We have also made an extensive effort to improve over the results of TIGER. CHEETAH`s version of the BKW equation of state (BKWC) is able to accurately reproduce energies from cylinder tests; something that other BKW parameter sets have been unable to do. Calculations performed with BKWC execute very quickly; typical run times are under 10 seconds on a workstation. In the future we plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.
Date: November 1, 1994
Creator: Fried, L. & Souers, P.
Partner: UNT Libraries Government Documents Department

Quantitative Molecular Thermochemistry Based on Path Integrals

Description: The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group.
Date: March 14, 2005
Creator: Glaesemann, K R & Fried, L E
Partner: UNT Libraries Government Documents Department

A multi-scale approach to molecular dynamics simulations of shock waves

Description: Study of the propagation of shock waves in condensed matter has led to new discoveries ranging from new metastable states of carbon [1] to the metallic conductivity of hydrogen in Jupiter, [2] but progress in understanding the microscopic details of shocked materials has been extremely difficult. Complications can include the unexpected formation of metastable states of matter that determine the structure, instabilities, and time-evolution of the shock wave. [1,3] The formation of these metastable states can depend on the time-dependent thermodynamic pathway that the material follows behind the shock front. Furthermore, the states of matter observed in the shock wave can depend on the timescale on which observation is made. [4,1] Significant progress in understanding these microscopic details has been made through molecular dynamics simulations using the popular non-equilibrium molecular dynamics (NEMD) approach to atomistic simulation of shock compression. [5] The NEMD method involves creating a shock at one edge of a large system by assigning some atoms at the edge a fixed velocity. The shock propagates across the computational cell to the opposite side. The computational work required by NEMD scales at least quadratically in the evolution time because larger systems are needed for longer simulations to prevent the shock wave from reflecting from the edge of the computational cell and propagating back into the cell. When quantum mechanical methods with poor scaling of computational effort with system size are employed, this approach to shock simulations rapidly becomes impossible.
Date: September 3, 2004
Creator: Reed, E. J.; Fried, L. E.; Manaa, M. R. & Joannopoulos, J. D.
Partner: UNT Libraries Government Documents Department

Modeling the Reactions of Energetic Materials in the Condensed Phase

Description: High explosive (HE) materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Although the history of HE materials is long, condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary in efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In addition, understanding the reaction mechanisms has important ramifications in disposing of such materials safely and cheaply, as there exist vast stockpiles of HE materials with corresponding contamination of earth and groundwater at these sites, as well as a military testing sites The ability to model chemical reaction processes in condensed phase energetic materials is rapidly progressing. Chemical equilibrium modeling is a mature technique with some limitations. Progress in this area continues, but is hampered by a lack of knowledge of condensed phase reaction mechanisms and rates. Atomistic modeling is much more computationally intensive, and is currently limited to very short time scales. Nonetheless, this methodology promises to yield the first reliable insights into the condensed phase processes responsible for high explosive detonation. Further work is necessary to extend the timescales involved in atomistic simulations. Recent work in implementing thermostat methods appropriate to shocks may promise to overcome some of these difficulties. Most current work on energetic material reactivity assumes that electronically adiabatic processes dominate. The role of excited states is becoming clearer, however. These states are not accessible in perfect crystals under realistic pressures and temperatures, but may still be accessed through defects or other energy localization mechanisms.
Date: December 3, 2003
Creator: Fried, L. E.; Manaa, M. R. & Lewis, J. P.
Partner: UNT Libraries Government Documents Department

Application of the TraPPE force field to predicting isothermal pressure-volume curves at high pressures and high temperatures

Description: Knowledge of the thermophysical properties of materials at extreme pressure and temperature conditions is essential for improving our understanding of many planetary and detonation processes. Significant gaps in what is known about the behavior of materials at high density and high temperature exist, largely due to the limitations and dangers of performing experiments at the necessary extreme conditions. Modeling these systems through the use of equations of state and particle-based simulation methods significantly extends the range of pressures and temperatures that can be safely studied. The reliability of such calculations depends on the accuracy of the models used. Here we present an assessment of the united-atom version of the TraPPE (Transferable Potentials for Phase Equilibria) force field and single-site exp-6 representations for methane, methanol, oxygen, and ammonia at extreme conditions. As shown by Monte Carlo simulations in the isobaric-isothermal ensemble, the TraPPE models, despite being parameterized to the vapor-liquid coexistence curve (i.e. relatively mild conditions), perform remarkably well in the high pressure/high temperature regime. The single-site exp-6 models can fit experimental data in the high pressure/temperature regime very well, but the parameters are less transferable to ambient conditions.
Date: May 19, 2006
Creator: Eggimann, B L; Siepmann, J I & Fried, L E
Partner: UNT Libraries Government Documents Department

Phase separation in H2O:N2 mixture - molecular dynamics simulations using atomistic force fields

Description: A class II atomistic force field with Lennard-Jones 6-9 nonbond interactions is used to investigate equations of state (EOS) for important high explosive detonation products N{sub 2} and H{sub 2}O in the temperature range 700-2500 K and pressure range 0.1-10 GPa. A standard 6th order parameter-mixing scheme is then employed to study a 2:1 (molar) H{sub 2}O:N{sub 2} mixture, to investigate in particular the possibility of phase-separation under detonation conditions. The simulations demonstrate several important results, including: (1) the accuracy of computed EOS for both N{sub 2} and H{sub 2}O over the entire range of temperature and pressure considered; (2) accurate mixing-demixing phase boundary as compared to experimental data; and (3) the departure of mixing free energy from that predicted by ideal mixing law. The results provide comparison and guidance to state-of-the-art chemical kinetic models.
Date: September 25, 2006
Creator: Maiti, A; Gee, R; Bastea, S & Fried, L
Partner: UNT Libraries Government Documents Department

New Theoretical Insight into the Interactions and Properties of Formic Acid: Development of a Quantum-Based Pair Potential for Formic Acid.

Description: We performed ab initio quantum chemical studies for the development of intra and intermolecular interaction potentials for formic acid for use in molecular dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter-molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.
Date: August 8, 2005
Creator: Roszak, S; Gee, R; Balasubramanian, K & Fried, L
Partner: UNT Libraries Government Documents Department

Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

Description: We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for species coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.
Date: June 20, 2006
Creator: Vitello, P; Fried, L; Glaesemann, K & Souers, C
Partner: UNT Libraries Government Documents Department

Equation of state for high explosives detonation products with explicit polar and ionic species

Description: We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models.
Date: June 28, 2006
Creator: Bastea, S; Glaesemann, K R & Fried, L E
Partner: UNT Libraries Government Documents Department

Chemistry of H2O and HF Under Extreme Conditions

Description: The predicted high pressure superionic phases of water and HF are investigated via ab initio molecular dynamics. These phases could potentially be achieved through either static compression with heating or through shock compression. We study water at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm.We find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. We find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, we find a solid superionic phase characterized by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. Ab initio molecular dynamics simulations of HF were conducted at densities of 1.8-4.0 g/cc along the 900 K isotherm. According to our simulations, a unique form of (symmetric) hydrogen bonding could play a significant role in superionic conduction. Our work shows that superionic phases could be more prevalent in hydrogen bonded systems than previously thought, such as HCl and HBr.
Date: November 28, 2005
Creator: Fried, L.; Goldman, N.; Kuo, I. W. & Mundy, C.
Partner: UNT Libraries Government Documents Department