7 Matching Results

Search Results

Advanced search parameters have been applied.

Shotgun protein sequencing.

Description: A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.
Date: June 1, 2009
Creator: Faulon, Jean-Loup Michel & Heffelfinger, Grant S.
Partner: UNT Libraries Government Documents Department

Enumerating molecules.

Description: This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.
Date: April 1, 2004
Creator: Visco, Donald Patrick, Jr. (, . Tennessee Technological University, Cookeville, TN); Faulon, Jean-Loup Michel & Roe, Diana C.
Partner: UNT Libraries Government Documents Department

Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

Description: The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.
Date: January 1, 2006
Creator: Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel & Roe, Diana C.
Partner: UNT Libraries Government Documents Department

Understanding and engineering enzymes for enhanced biofuel production.

Description: Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.
Date: January 1, 2009
Creator: Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M. & Roe, Diana C.
Partner: UNT Libraries Government Documents Department

Reverse engineering biological networks :applications in immune responses to bio-toxins.

Description: Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.
Date: December 1, 2005
Creator: Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor et al.
Partner: UNT Libraries Government Documents Department

The interfacial bioscience grand challenge.

Description: This report is broken down into the following 3 sections: (1) Chemical Cross-linking and Mass Spectrometry Applied to Determination of Protein Structure and Dynamics; (2) Computational Modeling of Membrane Protein Structure and Dynamics; and (3) Studies of Toxin-Membrane Interactions using Single Molecule Biophysical Methods.
Date: March 1, 2004
Creator: Lane, Pamela; Stevens, Mark Jackson; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Crozier, Paul Stewart et al.
Partner: UNT Libraries Government Documents Department

Model-building codes for membrane proteins.

Description: We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.
Date: January 1, 2005
Creator: Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA); Slepoy, Alexander; Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA) et al.
Partner: UNT Libraries Government Documents Department