21 Matching Results

Search Results

Advanced search parameters have been applied.

Requirements for Cell-Free Cyanide Oxidation by Pseudomonas Fluorescens NCIMB 11764

Description: The involvement of cyanide oxygenase in the metabolism of pyruvate and a-ketoglutarate-cyanohydrin was investigated and shown to occur indirectly by the consumption of free cyanide arising from the cyanohydrins via chemical dissociation. Thus, free cyanide remains the substrate, for which the enzyme displays a remarkably high affinity (Kmapp,4 mM). A model for cyanide utilization is therefore envisioned in which the substrate is initially detoxified by complexation to an appropriate ligand followed by enzymatic oxidation of cyanide arising at sublethal levels via chemical dissociation. Putative cyanide oxygenase in cell extracts consumed both oxygen and NADH in equimolar proportions during cyanide conversion to CO2 and NH3 and existed separately from an unknown heat-stable species responsible for the nonenzymatic cyanide-catalyzed consumption of oxygen. Evidence of cyanide inhibition and nonlinear kinetics between enzyme activity and protein concentration point to a complex mechanism of enzymatic substrate conversion.
Date: August 2000
Creator: Parab, Preeti
Partner: UNT Libraries

Cassette Systems for Creating Intergeneric Hybrid ATCases

Description: Cassette systems for creating intergeneric hybrid ATCases were constructed. An MluI restriction enzyme site was introduced at the carbamoylphosphate binding site within the pyrB genes of both Pseudomonas putida and Escherichia coli. Two hybrids, E. coli pyrB polar domain fused with P. putida pyrB equatorial domain and P. putida pyrB polar domain fused with E. coli pyrB equatorial domain, are possible. The intergeneric E. coli-P. putida hybrid pyrB gene was constructed and found to encode an active ATCase which complemented an E. coli Pyr- strain. These hybrids are useful for kinetic and expression studies of ATCase in E. coli.
Date: December 1999
Creator: Simpson, Luci N.
Partner: UNT Libraries

Comparative Mitochondrial DNA Sequence Diversity in Isolated and Open Populations of Southern Flying Squirrels

Description: Three populations of Southern flying squirrels were studied in the Ouachita Mountains of Arkansas to assess the impact of population subdivision-due to island formation--on the population genetics of Glaucomys volans. One island, one mainland, and one open population were investigated. A 367 nucleotide hypervariable region of mitochondrial DNA was sequenced in individuals from each population. Individuals and populations were compared to assess relatedness. Higher sequence diversity was detected in the open and island populations. One island individual shared characters with both the island and mainland populations. Results support the hypothesis that the mainland population may have reduced gene flow. Also, the island population may have been originally founded by at least two maternal lineages.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 1999
Creator: Cook, Melaney Birdsong
Partner: UNT Libraries

Adherence and Haemagglutination of Moraxella Catarrhalis.

Description: M. catarrhalis is a gram-negative diplococci frequently associated with infections of the upper respiratory tract. During the past decade, some preliminary studies have attempted to elucidate mechanisms of adherence and haemagglutination of M. catarrhalis. These studies have reported, in many cases, inconsistent results. There are two purposes of this research. First, identify mechanisms that may potentially be associated with the adherence and haemagglutination of M. catarrhalis. Second, suggest research directions that may be fruitful in clarifying these mechanisms.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Kosterman, Edward, III
Partner: UNT Libraries

Development of an In Vitro Protoplast Culture System for Albizia Lebek (L.) Benth., an Economically Important Leguminous Tree

Description: An in vitro system of generating protoplasts from their callus cultures was established. The friable callus was more productive in terms of producing protoplasts than the green compact callus. The concentration of the various cell wall degrading enzymes had an effect on the viability of the protoplasts in the medium. The protoplast system developed from the experiments was stable and could be used for the transformation experiments of Albizia lebek and for other plant improvement practices.
Date: August 1998
Creator: Sinha, Debleena
Partner: UNT Libraries

Characterization of the Aspartate Transcarbamoylase that is Found in the pyrBC’ Complex of Bordetella Pertussis

Description: An aspartate transcarbamoylase (ATCase) gene from Bordetella pertussis was amplified by PCR and ligated into pT-ADV for expression in Escherichia coli. This particular ATCase (pyrB) was an inactive gene found adjacent to an inactive dihydroorotase (DHOase) gene (pyrC'). This experiment was undertaken to determine whether this pyrB gene was capable of expression alone or if it was capable of expression only when cotransformed with a functional pyrC'. When transformed into E. coli TB2 pyrB-, the gene did not produce any ATCase activity. The gene was then co-transformed into E. coli TB2 pyrB- along with a plasmid containing the pyrC' gene from Pseudomonas aeruginosa and assayed for ATCase activity. Negative results were again recorded.
Date: December 2001
Creator: Dill, Michael T
Partner: UNT Libraries

A Study of the Pyrimidine Biosynthesis Pathway and its Regulation in Two Distinct Organisms: Methanococcus jannaschii and Pseudomonas aeruginosa

Description: Methanococcus jannaschii is a thermophilic methane producing archaebacterium. In this organism genes encoding the aspartate transcarbamoylase (ATCase) catalytic (PyrB) and regulatory (PyrI) polypeptides were found. Unlike Escherichia coli where the above genes are expressed from a biscistronic operon the two genes in M. jannaschii are separated by 200-kb stretch of genome. Previous researchers have not been able to show regulation of the M. jannaschii enzyme by the nucleotide effectors ATP, CTP and UTP. In this research project we have genetically manipulated the M. jannaschii pyrI gene and have been able to assemble a 310 kDa E. coli like enzyme. By using the second methionine in the sequence we have shown that the enzyme from this organism can assemble into a 310 kDa enzyme and that this enzyme is activated by ATP, CTP and inhibited by UTP. Thus strongly suggesting that the second methionine is the real start of the gene. The regulation of the biosynthetic pathway in Pseudomoans aeruginosa has previously been impossible to study due to the lack of CTP synthase (pyrG) mutants. By incorporating a functional uridine (cytidine) kinase gene from E. coli it has been possible to isolate a pyrG mutant. In this novel mutant we have been able to independently manipulate the nucleotide pools and study its effects on the enzymes in the biosynthetic pathway. The enzyme asapartate transcarbamoylase was repressed 5-fold when exogenous uridine was high and cytidine was low. The enzyme dihydroorotate was repressed 9-fold when uridine was high. These results suggest that a uridine compound may be the primary repressing metabolite for the enzymes encoded by pyrB and pyrC. This is the first study to be done with the proper necessary mutants in the biosynthetic pathway of P aeruginosa. In the past it has been impossible to vary the internal UTP and CTP ...
Date: December 2001
Creator: Patel, Seema R.
Partner: UNT Libraries

Characterization of Moraxella bovis Aspartate Transcarbamoylase

Description: Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in the pyrimidine biosynthetic pathway. Bacterial ATCases have been divided into three classes, class A, B, and C, based on their molecular weight, holoenzyme architecture, and enzyme kinetics. Moraxella bovis is a fastidious organism, the etiologic agent of infectious bovine keratoconjunctivitis (IBK). The M. bovis ATCase was purified and characterized for the first time. It is a class A enzyme with a molecular mass of 480 to 520 kDa. It has a pH optimum of 9.5 and is stable at high temperatures. The ATCase holoenzyme is inhibited by CTP > ATP > UTP. The Km for aspartate is 1.8 mM and the Vmax 1.04 µmol per min, where the Km for carbamoylphosphate is 1.05 mM and the Vmax 1.74 µmol per min.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Hooshdaran, Sahar
Partner: UNT Libraries

Construction of a Physical Map of Moraxella (Branhamella) catarrhalis Strain ATCC25238

Description: In order to gain a better understanding of this microorganismand its role in human pathogenesis, a physical map of Moraxella catarrhalis type strain ATCC25238 was constructed using pulsed field gel electrophoresis (PFGE) in combination with Southern hybridization techniques. Restriction endonucleases Not I, Rsr II, and Sma I were used to digest the chromosomal DNA. An overlapping circular map was generated by cross-hybridization of isolated radiolabeled fragments of Moraxella catarrhalis genomic DNA to dried PFGE gels. The number and location of the 16S and 23S ribosomal RNA genes were determined by digestion with l-Ceul enzyme and by Southern hybridization. Virulence-associated genes, the gene for β-lactamase, and housekeeping genes were also placed onto the physical map.
Date: May 1999
Creator: Nguyen, Kim Thuy
Partner: UNT Libraries

Identification and Characterization of the Pyrimidine Biosynthetic Operon in Streptomyces griseus

Description: To further understand the ATCase/DHOase bifunctional complex formed in Streptomyces, the genes encoding these and other pyrimidine enzymes were identified and characterized. Polymerase chain reaction (PCR) was utilized in this effort. Primers were constructed by selecting conserved regions of pyrimidine genes from known gene and protein sequences of a wide variety of organisms. These sequences were then optimized to Streptomyces codon usage. PCR products were obtained from internal sites within pyrimidine genes and also from primer combinations of different genes. The size, orientation, and partial sequence of the resulting products shows that Streptomyces has a gene organization of pyrR followed by pyrB, pyrC, carA, carB, and pyrF in an operon similar to that found in other Gram-positive bacteria.
Date: May 1998
Creator: Hooten, Jody J. (Jody Jeran)
Partner: UNT Libraries

Pyrimidine Genes in Pseudomonas Species

Description: This thesis is a comparative study of gene arrangements in Pseudomonas species, and is organized into three major sections. The first section compares gene arrangements for different pathways in Pseudomonas aeruginosa PAO1 to determine if the gene arrangements are similar to previous studies. It also serves as a reference for pyrimidine gene arrangements in P. aeruginosa. The second part compares the physical, and genetic maps of P. aeruginosa PAO1 with the genome sequence. The final section compares pyrimidine gene arrangements in three species of Pseudomonas. Pyrimidine biosynthesis and salvage genes will be aligned for P. aeruginosa PAO1, P. putida KT2440, and P. syringae DC3000. The whole study will gives insight into gene patterns in Pseudomonas, with a focus on pyrimidine genes.
Date: December 2003
Creator: Roush, Wendy A.
Partner: UNT Libraries

Effector Response of the Aspartate Transcarbamoylase From Wild Type Pseudomonas Putida and a Mutant with 11 Amino Acids Deleted at the N-terminus of PyrB.

Description: Like its enteric counterpart, aspartate transcarbamoylase (ATCase) from Pseudomonas putida is a dodecamer of two different polypeptides. Unlike the enterics, the Pseudomonas ATCase lacks regulatory polypeptides but employs instead inactive dihydroorotases for an active dodecamer. Previous work showed that PyrB contains not only the active site but also the effector binding sites for ATP, UTP and CTP at its N-terminus. In this work, 11 amino acids were deleted from the N-terminus of PyrB and the ATCase with the truncated protein was expressed in E. coli pyrB- and purified. The wild type enzyme was similarly treated. Velocity-substrate plots without effectors gave Michaelis-Menten kinetics in all cases. Deleting 11 amino acids did not affect dodecameric assembly but altered effector responses. When carbamoylphosphate was varied, the mutant enzyme was inhibited by UTP while the wild type enzyme was activated 2-fold. When the aspartate was varied, CTP had no effect on the mutant enzyme but strongly inhibited the wild type enzyme.
Date: May 2002
Creator: AsFour, Hani
Partner: UNT Libraries

Aspartate Transcarbamoylase of Aeromonas Hydrophila

Description: This study focused on the enzyme, aspartate transcarbamoylase (ATCase) from A. hydrophila, a Gram-negative bacterium found in fresh water. The molecular mass of the ATCase holoenzyme from A. hydrophila is 310 kDa. The enzyme is likely composed of 6 catalytic polypeptides of 34 kDa each and 6 regulatory polypeptides of 17 kDa each. The velocity-substrate curve for A. hydrophila ATCase is sigmoidal for both aspartate and carbamoylphosphate. The Km for aspartate was the highest to date for an enteric bacterium at 97.18 mM. The Km for carbamoylphosphate was 1.18 mM. When heated to 60 ºC, the specific activity of the enzyme dropped by more than 50 %. When heated to 100 ºC, the enzyme showed no activity. The enzyme's activity was inhibited by ATP, CTP or UTP.
Date: December 2000
Creator: Higginbotham, Leah
Partner: UNT Libraries

Inherent Problems Associated with the Identification of Genes Responsible for Allowing B. cepacia to Adhere to Human Lung Carcinoma A549 Cells

Description: In this project a bacteria's ability to bind to human lung tissue was investigated. To carry out this study Pseudomonas aeruginosa, Eschericia coli and Burkholderia cepacia were used. B. cepacia served as the bacterium of interest. Isolating the gene which confers upon this bacterium the ability to bind to lung tissue was the main objective of this study. P. aeruginosa has been identified as being the bacteria most responsible for causing serious lung infections that can result in cystic fibrosis. This bacterium therefore served as the positive control in this study. On the contrary, E. coli does not possess this binding ability and served as the negative control. This paper gives a detailed outline of the different procedures necessary for the successful completion of this project. Firstly, a broad guideline of the important steps involved are explored. This is followed by a discussion on potential problems and possible solutions. Throughout the document, illustrations of expected results are indicated so as to further guide the researcher.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2001
Creator: Nesty, Gilda S.
Partner: UNT Libraries

Production and Characterization of a Novel Extracellular Polysaccharide Produced by Paenibacillus velaei, Sp. Nov

Description: Paenibacillus velaei, sp. nov. is a soil bacterium capable of producing an unusually large amount of exopolysaccharide (EPS). The EPS contains glucose, mannose, galactose and fucose in a molar ratio of 4:2:1:1. The molecular weight of the EPS is higher than 2x106. The viscosity of 1% EPS is 1300 cP when measured at a shear rate of 1 sec-1. Physiological parameters for optimal production of the EPS were studied and it was found that 1.4 g dry weight per 1 l of medium was produced when the bacteria were grown at 30EC and the pH adjusted at 7± 0.2 in a medium containing glucose as the carbon source. Growing the bacteria on different carbon sources did not alter the quantity or the composition of the EPS produced. No toxicity effects were observed in mice or rats when EPS was administered in amounts ranging from 20 to 200 mg per kg body weight. The data obtained from physical, chemical and biological properties suggest that the EPS may be employed in several industrial and environmental applications. It is an excellent emulsifier, it holds 100 times its own weight in water, it is not toxic, and it can be used to remove mercury, cadmium and lead from aqueous solutions.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Sukplang, Patamaporn
Partner: UNT Libraries

Comparative Biochemistry and Evolution of Aspartate Transcarbamoylase from Diverse Bacteria

Description: Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in pyrimidine biosynthesis. Bacterial ATCases are divided into three classes, A, B and C. Class A ATCases are largest at 450-500, are. dodecamers and represented by Pseudomonas ATCase. The overlapping pyrBC' genes encode the Pseudomonases ATCase, which is active only as a 480 kDa dodecamer and requires an inactive pyrC'-encoded DHOase for ATCase activity. ATCase has been studied in two non-pathogenic members of Mycobacterium, M. smegmatis and M. phlei. Their ATCases are dodecamers of molecular weight 480 kDa, composed of six PyrB and six PyrC polypeptides. Unlike the Pseudomonas ATCase, the PyrC polypeptide in these mycobacteria encodes an active DHOase. Moreover, the ATCase: DHOase complex in M. smegmatis is active both as the native 480 kDa and as a 390 kDa complex. The latter lacks two PyrC polypeptides yet retains ATCase activity. The ATCase from M. phlei is similar, except that it is active as the native 480 kDa form but also as 450,410 and 380 kDa forms. These complexes lack one, two, and three PyrC polypeptides, respectively. By contrast,.ATCases from pathogenic mycobacteria are active only at 480 kDa. Mycobacterial ATCases contain active DHOases and accordingly. are placed in class A1 . The class A1 ATCases contain active DHOases while class A2 ATCases contain inactive DHOases. ATCase has also been purified from Burkholderia cepacia and from an E. coli strain in which the cloned pyrB of B. cepacia was expressed. The B. cepacia ATCase has a molecular mass of 550 kDa, with two different polypeptides, PyrB (52 kDa) and PyrC of (39 kDa). The enzyme is active both as the native enzyme at 550 kDa and as smaller molecular forms including 240 kDa and 165 kDa. The ATCase synthesized by the cloned pyrB gene has a molecular weight of 165 kDa composed ...
Date: May 1999
Creator: Hooshdaran, Massoumeh Ziba
Partner: UNT Libraries

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant

Description: Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, the 550 kDa holoenzyme and 140 kDa and 120 kDa trimers disappeared and were replaced with a previously unseen 480 kDa holoenzyme pyrB- strain. The results suggest that B. cepacia has two genes that encode ATCase. ATC1 is constitutive and ATC2 is expressed only in the absence of ATC1 activity. To check for the virulence of these two strains, a eukaryotic model virulence test was performed using Caenorhabditis elegans (C. elegans). The pyrB1+pyrB2+ (wild type) B cepacia killed the nematode but pyrB1-pyrB2+ B. cepacia had lost its virulence against C. elegans. This suggests that ATC1 (pyrB1) is involved in virulence ...
Date: December 2004
Creator: Kim, Seongcheol
Partner: UNT Libraries

Biochemical Identification of Molecular Components Required for Cyanide Assimilation in Pseudomonas fluorescens NCIMB 11764

Description: Utilization of cyanide as a nutritional nitrogen source in P. fluorescens NCIMB 11764 was shown to involve a novel metabolic mechanism involving nonenzymatic neutralization outside of cells prior to further enzymatic oxidation within. Several cyanide degrading enzymes were produced by NCIMB 11764 in response to growth or exposure to cyanide, but only one of these cyanide, oxygenase (CNO), was shown to be physiologically required for assimilation of cyanide as a growth substrate.
Date: May 1998
Creator: Chen, Jui-Lin
Partner: UNT Libraries

Structure-Function Studies on Aspartate Transcarbamoylase and Regulation of Pyrimidine Biosynthesis by a Positive Activator Protein, PyrR in Pseudomonas putida

Description: The regulation of pyrimidine biosynthesis was studied in Pseudomonas putida. The biosynthetic and salvage pathways provide pyrimidine nucleotides for RNA, DNA, cell membrane and cell wall biosynthesis. Pyrimidine metabolism is intensely studied because many of its enzymes are targets for chemotheraphy. Four aspects of pyrimidine regulation are described in this dissertation. Chapter I compares the salvage pathways of Escherichia coli and P. putida. Surprisingly, P. putida lacks several salvage enzymes including nucleoside kinases, uridine phosphorylase and cytidine deaminase. Without a functional nucleoside kinase, it was impossible to feed exogenous uridine to P. putida. To obviate this problem, uridine kinase was transferred to P. putida from E. coli and shown to function in this heterologous host. Chapter II details the enzymology of Pseudomonas aspartate transcarbamoylase (ATCase), its allosteric regulation and how it is assembled. The E. coli ATCase is a dodecamer of two different polypeptides, encoded by pyrBI. Six regulatory (PyrI) and six catalytic (PyrB) polypeptides assemble from two preformed trimers (B3) and three preformed regulatory dimers (I2) in the conserved 2B3:3I2 molecular structure. The Pseudomonas ATCase also assembles from two different polypeptides encoded by pyrBC'. However, a PyrB polypeptide combines with a PyrC. polypeptide to form a PyrB:PyrC. protomer; six of these assemble into a dodecamer of structure 2B3:3C'2. pyrC' encodes an inactive dihydroorotase with pyrB and pyrC' overlapping by 4 bp. Chapter III explores how catabolite repression affects pyrimidine metabolism. The global catabolite repression control protein, Crc, has been shown to affect pyrimidine metabolism in a number of ways. This includes orotate transport for use as pyrimidine, carbon and nitrogen sources. Orotate is important because it interacts with PyrR in repressing the pyr genes. Chapter IV describes PyrR, the positive activator of the pyrimidine pathway. As with other positive activator proteins, when pyrimidine nucleotides are depleted, PyrR binds to ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Kumar, Alan P.
Partner: UNT Libraries

Comparative biochemistry and genetic analysis of nucleoside hydrolase in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens.

Description: The pyrimidine salvage enzyme, nucleoside hydrolase, is catalyzes the irreversible hydrolysis of nucleosides into the free nucleic acid base and D-ribose. Nucleoside hydrolases have varying degrees of specificity towards purine and pyrimidine nucleosides. In E. coli, three genes were found that encode homologues of several known nucleoside hydrolases in protozoa. All three genes (designated yaaF, yeiK, and ybeK) were amplified by PCR and cloned. Two of the gene products (yeiK and ybeK) encode pyrimidine-specific nucleoside hydrolases, while the third (yaaF) encodes a nonspecific nucleoside hydrolase. All three were expressed at low levels and had different modes of regulation. As a comparative analysis, the homologous genes of Pseudomonas aeruginosa and P. fluorescens (designated nuh) were cloned. Both were determined to encode nonspecific nucleoside hydrolases. The nucleoside hydrolases of the pseudomonads exhibited markedly different modes of regulation. Both have unique promoter structures and genetic organization. Furthermore, both pseudomonad nucleoside hydrolase were found to contain an N-terminal extension of 30-35 amino acids that is shown to act as a periplasmic-signaling sequence. These are the first two nucleoside hydrolases, to date,that have been conclusively demonstrated to be exported to the periplasmic space. The physiological relevance of this is explained.
Date: December 2002
Creator: Fields, Christopher J.
Partner: UNT Libraries

Modifications in Cellular Responses of Mononuclear Cells Exposed to Mycobacterium Avium Serovar-specific Glycopeptidolipid and Its Lipopeptide Fragment

Description: Immunological and ultrastructural changes in mononuclear cells exposed to Mycobacterium avium serovar-specific glycopeptidolipid (GPL) and the chemically derived R-lipid (lipopeptide fragment) were examined.
Date: December 1992
Creator: Pourshafie, Mohammed R.
Partner: UNT Libraries