24 Matching Results

Search Results

Advanced search parameters have been applied.

Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

Description: In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate-payers from the combined ...
Date: March 1, 2000
Creator: Konopacki, S. & Akbari, H.
Partner: UNT Libraries Government Documents Department

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

Description: This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.
Date: January 16, 2004
Creator: Gumerman, Etan & Marnay, Chris
Partner: UNT Libraries Government Documents Department

Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

Description: Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.
Date: November 1, 2000
Creator: Akbari, Hashen & Rainer, Leo
Partner: UNT Libraries Government Documents Department

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation

Description: This study was performed in order to find suitable efficiency and leakage specifications for Energy Star duct systems and provide recommendations on duct insulation specifications. This analysis looks at a typical house, with a selection of duct locations, climates, duct insulation (R-value), and duct leakage. A set of calculations were performed with reduced capacity and airflow to look at the effect of variable capacity systems. This was done to address concerns regarding the increased efficiency of multi-capacity equipment due to good part load performance and how these efficiency gains may be offset by increased duct losses. The duct system efficiencies were calculated using the procedures in proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 1999). This proposed ASHRAE Standard can be used to calculate duct efficiency for both design and seasonal weather conditions. In this report, the seasonal efficiencies are used for most of the analysis because they are the most appropriate for estimating energy consumption in buildings. The effects at peak conditions are examined for changing duct insulation in order to provide preliminary estimates of the potential responses to time of use pricing. The study was performed in two parts. The first part focused on duct leakage and the second part on duct insulation. The HVAC systems in the two parts share many attributes, however, they differ in detail and so are treated separately here. All the calculation results are summarized in tables in the Appendix, and specific results are given in the text.
Date: September 1, 2001
Creator: Walker, Iain
Partner: UNT Libraries Government Documents Department

Strategies for cost-effective carbon reductions: A sensitivity analysis of alternative scenarios

Description: Analyses of alternative futures often present results for a limited set of scenarios, with little if any sensitivity analysis to identify the factors affecting the scenario results. This approach creates an artificial impression of certainty associated with the scenarios considered, and inhibits understanding of the underlying forces. This paper summarizes the economic and carbon savings sensitivity analysis completed for the Scenarios for a Clean Energy Future study (IWG, 2000). Its 19 sensitivity cases provide insight into the costs and carbon-reduction impacts of a carbon permit trading system, demand-side efficiency programs, and supply-side policies. Impacts under different natural gas and oil price trajectories are also examined. The results provide compelling evidence that policy opportunities exist to reduce carbon emissions and save society money.
Date: July 11, 2001
Creator: Gumerman, Etan; Koomey, Jonathan G. & Brown, Marilyn
Partner: UNT Libraries Government Documents Department

Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

Description: In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.
Date: August 1, 2002
Creator: McKone, T.E. & Bennett, D.H.
Partner: UNT Libraries Government Documents Department

Replacing annual shut-in well tests by analysis of regular injection data: Field-case feasibility study

Description: Regulations governing deep injection of industrial wastes for disposal require regular tests for monitoring the formation hydraulic properties changes in the vicinity of the wellbore. Such a monitoring is performed through transient pressure well testing, a procedure that is routinely used in the environmental and oil industries. In such tests, the pumping pressures and rates are recorded and analyzed to estimate the transmissivity and storativity of the rock in the vicinity of the wellbore. Numerous methods for analyzing such data have been developed since the pioneering paper by Theis (1935). The well test analysis methods are summarized in several monographs, see, e.g., Earlougher (1977) and Matthews (1967). Traditional well test analysis methods are often based on estimating the slope of the pressure fall-off curve in a special time scale, e.g., using the Horner plot method (Horner, 1951). Such an approach is justified by asymptotic analysis of the pressure change relative to a uniform initial pressure distribution. However, in reality, such an initial condition may not hold true because the operations preceding the test make the pressure distribution not uniform. It has been demonstrated in Silin and Tsang (2002, 2003) that in the Horner plot method, this circumstance partially explains the deviation of the data points from the theoretically predicted straight line. A new method has been proposed to analyze well test data accounting for the pre-test operations. This method has been validated using synthetic and field well test data. In this paper, we demonstrate how the method can be applied to analyze regular pumping data from an injection field to estimate the formation's hydraulic properties without interrupting the operations. In this estimation, we use the code ODA developed at Berkeley Lab. This code implements the methods and algorithms developed by Silin and Tsang (2002, 2003).
Date: May 21, 2003
Creator: Silin, Dmitry; Tsang, Chin-Fu & Gerrish, Harlan
Partner: UNT Libraries Government Documents Department

Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas

Description: In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52 km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.
Date: January 15, 2003
Creator: Rose, Leanna Shea; Akbari, Hashem & Taha, Haider
Partner: UNT Libraries Government Documents Department

Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

Description: In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City, UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily ...
Date: February 28, 2002
Creator: Konopacki, S. & Akbari, H.
Partner: UNT Libraries Government Documents Department

Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah

Description: Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.
Date: February 28, 2001
Creator: Akbari, Hashem & Rose, L. Shea
Partner: UNT Libraries Government Documents Department

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin

Description: In this study, we measured and documented summertime air-conditioning (a/c) daily energy savings and demand reduction from a reflective roof membrane retrofit on a large retail store in Austin, Texas. The original black rubber membrane was replaced with white thermoplastic resulting in a decrease in the average maximum roof surface temperature from 168 degrees F (76 degrees C) to 126 degrees F (52 degrees C). This building, with 100,000ft2 (9300m2) of roof area, yielded 3.6Wh/ft2 (39Wh/m2) in a/c average daily energy savings and 0.35W/ft2 (3.8W/m2) in average reduced demand. Total a/c annual abated energy and demand expenditures were estimated to be $7200 or $0.072/ft2 ($0.77/m2). Based on cost data provided by the building manager, the payback is instantaneous with negligible incremental combined labor and material costs. The estimated present value of future abated expenditures ranged from $62,000 to $71,000 over the baseline 13-year service life of the roof membrane.
Date: June 25, 2001
Creator: Konopacki, Steven J. & Akbari, Hashem
Partner: UNT Libraries Government Documents Department

Labs21 Environmental Performance Criteria: Toward 'LEED (trademark) for Labs'

Description: Laboratory facilities present a unique challenge for energy efficient and sustainable design, with their inherent complexity of systems, health and safety requirements, long-term flexibility and adaptability needs, energy use intensity, and environmental impacts. The typical laboratory is about three to five times as energy intensive as a typical office building and costs about three times as much per unit area. In order to help laboratory stakeholders assess the environmental performance of their laboratories, the Labs21 program, sponsored by the US Environmental Protection Agency and the US Department of Energy, is developing the Environmental Performance Criteria (EPC), a point-based rating system that builds on the LEED(TM) rating system. Currently, LEED(TM) is the primary tool used to rate the sustainability of commercial buildings. However, it lacks some attributes essential to encouraging the application of sustainable design principles to laboratory buildings. Accordingly, the EPC has additions and modifications to the prerequisites and credits in each of the six sections of LEED(TM). It is being developed in a consensus-based approach by a diverse group of architects, engineers, consulting experts, health & safety personnel and facilities personnel. This report describes the EPC version 2.0, highlighting the underlying technical issues, and describes implications for the development of a LEED version for Laboratories.
Date: October 14, 2002
Creator: Mathew, Paul; Sartor, Dale; Lintner, William & Wirdzek, Phil
Partner: UNT Libraries Government Documents Department

Clean development mechanism: Perspectives from developing countries

Description: This paper addresses the political acceptability and workability of CDM by and in developing countries. At COP-3 in Kyoto in 1997, the general position among developing countries changed from strong rejection of joint implementation to acceptance of CDM. The outgrowth of CDM from a proposal from Brazil to establish a Clean Development Fund gave developing countries a sense of ownership of the idea. More importantly, establishing support for sustainable development as a main goal for CDM overcame the resistance of many developing countries to accept a carbon trading mechanism. The official acceptance of CDM is not a guarantee of continued acceptance, however. Many developing countries expect CDM to facilitate a substantial transfer of technology and other resources to support economic growth. There is concern that Annex I countries may shift official development assistance into CDM in order to gain carbon credits, and that development priorities could suffer as a result. Some fear that private investments could be skewed toward projects that yield carbon credits. Developing country governments are wary regarding the strong role of the private sector envisioned for CDM. Increasing the awareness and capacity of the private sector in developing countries to initiate and implement CDM projects needs to be a high priority. While private sector partnerships will be the main vehicle for resource transfer in CDM, developing country governments want to play a strong role in overseeing and guiding the process so that it best serves their development goals. Most countries feel that establishment of criteria for sustainable development should be left to individual countries. A key issue is how CDM can best support the strengthening of local capacity to sustain and replicate projects that serve both climate change mitigation and sustainable development objectives.There is support among developing countries for commencing CDM as soon as possible. Since official ...
Date: June 1, 1999
Creator: Sari, Agus P. & Meyers, Stephen
Partner: UNT Libraries Government Documents Department

Rating energy efficiency and sustainability in laboratories: Results and lessons from the Labs21 program

Description: Laboratories are very energy intensive, with significant opportunities for improved efficiency. However, their inherent complexity and variety makes benchmarking of their energy and environmental performance a unique and challenging task. Furthermore, laboratories have a myriad of health and safety requirements that significantly affect energy use, adding complexity to their benchmarking. The Labs21 program, a joint program of the US EPA and US DOE, has developed two resources specifically for assessing laboratory energy and environmental performance: (1) An energy benchmarking tool which allows users to compare laboratories using a standard set of building and system level energy use metrics. (2) The Environmental Performance Criteria (EPC) a point-based rating system that builds on the LEED(TM) green building rating system, designed to score overall environmental performance. In this paper, for each of these tools we present the underlying methodology and results from their use. For the benchmarking tool, we contrast our approach, which includes a simulation model-based component, with those used for other building types. We also present selected results from data collection and analysis of about 40 private and public sector laboratory facilities. In the case of the EPC, we describe variations from the LEED standard, focusing on the energy credits. Finally, using laboratories as a case in point, we discuss lessons learned that can be applied to the development of similar tools for other building types that have complex requirements impacting energy and environmental performance.
Date: May 26, 2004
Creator: Mathew, Paul; Sartor, Dale; van Geet, Otto & Reilly, Sue
Partner: UNT Libraries Government Documents Department

Energy efficiency programs for niche markets: The Labs21 program as an exemplar

Description: Most federal programs that promote energy efficiency and environmental sustainability in the building industry focus on the larger market segments such as offices, residential buildings, etc. Niche markets such as laboratories are often overlooked and beyond the scope of such programs, for at least two reasons: (a) by definition, niche markets are a relatively small ''wedge'' of the overall energy consumption ''pie''; and (b) laboratories have health and safety concerns, complex flexibility requirements and are perceived to be less amenable to broadly applicable strategies. Nevertheless, laboratories and other ''high-tech'' buildings demand the attention of the energy efficiency and sustainable design community for several reasons: (1) They are a growing segment of the building sector. (2) They are very energy and resource intensive laboratories on average are four to six times as energy intensive as office buildings, and five to ten times as expensive to build. (3) There are significant opportunities for efficiency and conservation, especially when compared to other buildings. In this paper, we describe how the Labs21 program, a joint program of the US EPA and US DOE, is structured to meet these needs recognizing that laboratories require very specialized engineering and design knowledge not addressed in academia or industry, and not readily shared to a level commensurate with the needs of this building sector. While Labs21 is focused on one niche market, we also highlight some experiences from this program applicable to other specialized building types.
Date: June 1, 2004
Creator: Wirdzek, Phillip; Lintner, William; Mathew, Paul & Carlisle, Nancy
Partner: UNT Libraries Government Documents Department

Status and future directions of the ENERGY STAR program

Description: In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.
Date: June 19, 2000
Creator: Brown, Richard E.; Webber, Carrie A. & Koomey, Jonathan G.
Partner: UNT Libraries Government Documents Department

Effects of composition and exposure on the solar reflectance of Portland cement concrete

Description: Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance of concrete. Efflorescence and surface carbonation whitened some gray-cement mixes.
Date: December 21, 2001
Creator: Levinson, Ronnen & Akbari, Hashem
Partner: UNT Libraries Government Documents Department

Emerging energy-efficient technologies for industry

Description: For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.
Date: March 20, 2001
Creator: Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna et al.
Partner: UNT Libraries Government Documents Department

An Assessment of the U.S. Residential Lighting Market

Description: This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.
Date: October 1, 1995
Creator: Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan & Sardinsky, Robert
Partner: UNT Libraries Government Documents Department

Supporting integrated design through interlinked tools: The Labs21 toolkit

Description: The sustainable design of complex building types such as laboratories and hospitals can be particularly challenging, given their inherent complexity of systems, health and safety requirements, long-term flexibility and adaptability needs, energy use intensity, and environmental impacts. Tools such as design guides, energy benchmarking, and LEED rating systems are especially helpful to support sustainable design in such buildings. Furthermore, designers need guidance on how to effectively and appropriately use each tool within the context of an integrated design process involving multiple actors with various objectives. Toward this end, the Laboratories for the 21st Century (Labs21) program has developed an interlinked set of tools -- the Labs21 Toolkit -- to support an integrated design process for sustainable laboratories. Labs21 is a voluntary partnership program sponsored by the U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) to improve the environment al performance of U.S. laboratories. In this paper, we present the Labs21 Toolkit, and illustrate how these tools can be used to support sustainable design within an integrated design process. The tool kit includes core information tools, as well as process-related tools, as indicated below: Core information tools: -A Design Guide, which is a compendium of publications on energy efficiency in laboratories -Case Studies that showcase high-performance design features and applications. -Best Practice Guides that highlight industry-leading sustainable design strategies. -A web-based Benchmarking Tool to benchmark laboratory energy performance.Process tools: -A Design Intent Tool, which can be used to used to plan, document, and verify that a facility's design intent is being met at each stage of the design process. The Environmental Performance Criteria (EPC), a rating system specifically designed for laboratory facilities that builds on the LEED(TM) system. -A web-based Process Manual, that provides a ''portal'' to the tools and a step-by-step process for using these tools during ...
Date: September 15, 2003
Creator: Mathew, Paul; Bell, Geoffrey; Carlisle, Nancy; Sartor, Dale; van Geet, Otto; Lintner, William et al.
Partner: UNT Libraries Government Documents Department

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

Description: This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay ...
Date: January 22, 2004
Creator: Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J. & Busch, John F.
Partner: UNT Libraries Government Documents Department

Energy Systems and Population Health

Description: It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy to rural and urban health ...
Date: April 12, 2004
Creator: Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A. et al.
Partner: UNT Libraries Government Documents Department

The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results

Description: The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.
Date: January 1, 1992
Creator: Rimkus, W.A.; Larsen, R.P. (Argonne National Lab., IL (United States)); Zammit, M.G. (Johnson Matthey, Wayne, PA (United States)); Davies, J.G.; Salmon, G.S. (General Motors of Canada Ltd., Toronto, ON (Canada)) & Bruetsch, R.I. (US Environmental Protection Agency (United States))
Partner: UNT Libraries Government Documents Department