6 Matching Results

Search Results

Advanced search parameters have been applied.

Effects of an RTG power source on neutron spectroscopy measurements on the martian surface.

Description: A continuing goal of Mars science is to identify the exact locations of near-surface water and/or hydrated minerals using in situ measurements. Recent data from the Mars Odyssey mission has used both neutron and gamma-ray spectroscopy to measure large amounts of water ice near both polar regions . Furthermore, these data have also determined that in the mid-latitude regions, there likely exist relatively large amounts of hydrogen (-4-7 equivalent H2O wt.%), although it is not certain in which form this hydrogen exists . While these are exciting results, one drawback of these measurements is that they are averaged over a large (-400 km) footp ri nt and do not reflect any small (<1 km) inhomogenieties in hydrogen abundance that likely exist on the Martian surface. For any future in situ mission (e g, Mars Smart Lander (MSL)) that seeks to measure and characterize nearsurface H 2O, especially in the mid-latitude regions, is will be necessary to know th e locati ons of the H20.
Date: January 1, 2003
Creator: Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.) & Wiens, R. C. (Roger C.)
Partner: UNT Libraries Government Documents Department

In situ neutron spectroscopy on the martian surface: modeling the hydra instrument for different mission scenarios

Description: Neutron spectroscopy has proven to be highly successful in remotely detecting and measuring the abundance of water on planetary surfaces such as Mars and the Moon. Because of the central role played by water on Mars and the need to make in situ measurements of water abundances for landed missions, neutron spectroscopy is being investigated as a technique for quickly determining the near-surface water abundance for fhture Mars missions, such as the Mars Smart Larider (MSL).
Date: January 1, 2003
Creator: Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.); Feldman, W. C. (William C.); Moore, K. R. (Kurt R.); Prettyman, T. H. (Thomas H.) & Weins, R. C. (Roger C.)
Partner: UNT Libraries Government Documents Department

Lunar surface outgassing and alpha particle measurements

Description: The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.
Date: January 1, 2002
Creator: Lawson, S. L. (Stefanie L.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Moore, K. R. (Kurt R.); Elphic, R. C. (Richard C.); Maurice, S. (Sylvestre) et al.
Partner: UNT Libraries Government Documents Department

Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

Description: Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.
Date: January 1, 2001
Creator: Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Elphic, R. C. (Richard C.); Gasnault, O. M. (Olivier M.); Maurice, S. (Sylvestre) et al.
Partner: UNT Libraries Government Documents Department

Regional elemental abundances within South Pole-Aitken basin as measured with lunar prospector gamma-ray spectrometer data.

Description: South Pole-Aitken (SPA) basin has been a target of intense study since it is one of the largest impact basins in the solar system. It is thought that SPA basin excavated deep into the lunar crust and possibly even the mantle. Such conclusions have been supported by the observed mafic and thorium composition anomalies seen across the entire basin. One of the major goals of lunar and planetary science has been to measure and understand the composition of the non-mare materials within SPA basin. It is expected that this information will help to increase our understanding of the formation and differentiation processes that occurred early on the Moon.
Date: January 1, 2003
Creator: Lawrence, David J. (David Jeffery),; Pieters, Carlé M.; Elphic, R. C. (Richard C.); Gasnault, O. M. (Olivier M.); Prettyman, T. H. (Thomas H.) & Feldman, W. C. (William C.)
Partner: UNT Libraries Government Documents Department

Mid-latitude composition of mars from thermal and epithermal neutrons

Description: Epithermal neutron data acquired by Mars Odyssey have been analyzed to determine global maps of water-equivalent hydrogen abundance. By assuming that hydrogen was distributed uniformly with depth within the surface, a map of minimum water abundance was obtained. The addition of thermal neutrons to this analysis could provide information needed to determine water stratigraphy. For example, thermal and epithermal neutrons have been used together to determine the depth and abundance of waterequivalent hydrogen of a buried layer in the south polar region. Because the emission of thermal neutrons from the Martian surface is sensitive to absorption by elements other than hydrogen, analysis of stratigraphy requires that the abundance of these elements be known. For example, recently published studies of the south polar region assumed that the Mars Pathfinder mean soil composition is representative of the regional soil composition, This assumption is partially motivated by the fact that Mars appears to have a well-mixed global dust cover and that the Pathfinder soil composition is representative of the mean composition of the Martian surface. In this study, we have analyzed thermal and epithermal neutron data measured by the neutron spectrometer subsystem of the gamma ray spectrometer to determine the spatial distribution of the composition of elements other than hydrogen. We have restricted our analysis to mid-latitude regions for which we have corrected the neutron counting data for variations in atmospheric thickness.
Date: January 1, 2003
Creator: Prettyman, T. H. (Thomas H.); Feldman, W. C. (William C.); Elphic, R. C. (Richard C.); Boynton, W. V. (William V.); Bish, D. L. (David L.); Vaniman, D. T. (David T.) et al.
Partner: UNT Libraries Government Documents Department