60 Matching Results

Search Results

Advanced search parameters have been applied.

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Date: May 2012
Creator: Li, Yun
Partner: UNT Libraries

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Description: A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Date: August 2009
Creator: Dutta, Madhuri
Partner: UNT Libraries

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Date: August 2009
Creator: Tu, Wei-Lun
Partner: UNT Libraries

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Description: Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Date: August 2013
Creator: Baillio, Sarah S.
Partner: UNT Libraries

Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Description: Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package to predict the temperature evolution during laser processing. The thermal histories predicted by the model are used to evaluate the cooling rates and solidification rate and the associated changes in the microstructure. The surface energy of laser surface modification samples can be calculated by measuring the contact angle with 3 different standard liquid (D.I water, Formamide, and 1-Bromonaphthalen). The bio-wettability of the laser surface modification samples can be conducted by simulated body fluid contact angle measurement. The results of SEM, 3D morphology, XRD, and contact angle measurement show that the grain size and roughness play role for wetting behavior of laser processing Mg samples. Surface with low roughness and large grain size performs as hydrophilicity. On the contrast, surface with high roughness and small grain size performs as hydrophobicity.
Date: December 2013
Creator: Ho, YeeHsien
Partner: UNT Libraries

Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene

Description: This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. The PP film formulations were divided into 15 categories based on the type of HALS and nano-ZnO incorporated. This was done to derive meaningful comparison of the various film formulations. Following exposure under UV light, the lifetimes of certain formulations were determined. On the basis of the mechanical and friction properties, it was determined that generally, the HALS or nano-ZnO stabilized PP film give better properties and if those two kinds of UV stabilizers can work together.
Date: December 2017
Creator: Lu, Xinyao
Partner: UNT Libraries

Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites

Description: The aim of this study was to understand the processing – structure – property relationships in spark plasma sintered (SPS) boron carbide (B4C) and B4C-titanium diboride (TiB2) ceramic composites. SPS allowed for consolidation of both B4C and B4C-TiB2 composites without sintering additives, residual phases, e.g., graphite, and excessive grain growth due to long sintering times. A selection of composite compositions in 20% TiB2 feedstock powder increments from 0% to 100%, was sintered at 1900°C for 25 minutes hold time. A homogeneous B4C-TiB2 composite microstructure was determined with excellent distribution of TiB2 phase, while achieving ~99.5% theoretical density. An optimum B4C-23 vol.% TiB2 composite composition with low density of ~3.0 g/cm3 was determined that exhibited ~30-35% increase in hardness, fracture toughness, and flexural bend strength compared to commercial armor-grade B4C. This is a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a strengthening and toughening agent, and SPS shows promise for the manufacture of hybrid ceramic composites.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2018
Creator: Rubink, William S
Partner: UNT Libraries

Reactions and Interfacial Behaviors of the Water–Amorphous Silica System from Classical and Ab Initio Molecular Dynamics Simulations

Description: Due to the wide application of silica based systems ranging from microelectronics to nuclear waste disposal, detailed knowledge of water-silica interactions plays an important role in understanding fundamental processes, such as glass corrosion and the long term reliability of devices. In this dissertation, atomistic computer simulation methods have been used to explore and identify the mechanisms of water-silica reactions and the detailed processes that control the properties of the water-silica interfaces due to their ability to provide atomic level details of the structure and reaction pathways. The main challenges of the amorphous nature of the silica based systems and nano-porosity of the structures were overcome by a combination of simulation methodologies based on classical molecular dynamics (MD) simulations with Reactive Force Field (ReaxFF) and density functional theory (DFT) based ab initio MD simulations. Through the development of nanoporous amorphous silica structure models, the interactions between water and the complex unhydroxylated internal surfaces identified the unusual stability of strained siloxane bonds in high energy ring structure defects, as well as the hydroxylation reaction kinetics, which suggests the difficulty in using DFT methods to simulate Si-O bond breakage with reasonable efficiency. Another important problem addressed is the development of silica gel structures and their interfaces, which is considered to control the long term residual dissolution rate in borosilicate glasses. Through application of the ReaxFF classical MD potential, silica gel structures which mimic the development of interfacial layers during silica dissolution were created A structural model, consisting of dense silica, silica gel, and bulk water, and the related interfaces was generated, to represent the dissolution gel structure. High temperature evolution of the silica-gel-water (SGW) structure was performed through classical MD simulation of the system, and growth of the gel into the water region occurred, as well as the formation of intermediate range structural ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Rimsza, Jessica M
Partner: UNT Libraries

Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Description: Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required. This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due to non-stoichiometry determine the effective increased workfunction of the AZO/transition-metal oxide stacks. Reduced hole injection barriers were engineered by ensuring that the surface ad-layers were sufficiently thin to facilitate Fowler-Nordheim tunneling. Improved band alignments resulted in improved hole injection from the surface modified AZO anodes, as demonstrated by I-V characterization of hole only structures. Energy band alignments are proposed based on the aforementioned spectroscopies. Simple bilayer OLEDs employing the surface modified AZO anodes were fabricated and characterized to compare their performance with standard ITO. Anodes consisting of AZO with MoOx or VOx interfacial layers exhibited 50% and 71% improvement in ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Jha, Jitendra
Partner: UNT Libraries

Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys

Description: The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its higher zinc content, which leads to a higher volume fraction of eta' precipitates. It is typically used in a slight overaged condition since it exhibits better corrosion resistance. In this work, the welds of friction stir welded aluminum 7449 were studied extensively. Specific focus was placed in the heat affected zone (HAZ) and nugget. Thermocouples were used in the heat affected zone for three different depths to obtain thermal profiles as well as cooling/heating profiles. Vicker microhardness testing, transmission electron microscope (TEM), and differential scanning calorimeter (DSC) were used to characterize the welds. Two different tempers of the alloy were used, a low overaged temper and a high overaged temper. A thorough comparison of the two different tempers was done. It was found that highly overaged aluminum 7449 tempers show better properties for friction stir welding. A heat gradient along with a high conducting plate (Cu) used at the bottom of the run, resulted in welds with two separate microstructures in the nugget. Due to the microstructure at the bottom of the nugget, higher strength than the base metal is observed. Furthermore, the effects of natural aging and artificial aging were studied to understand re-precipitation. Large improvements in strength are observed after natural aging throughout the welds, including improvements in the HAZ.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Martinez, Nelson Y
Partner: UNT Libraries

In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing

Description: Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the pressent efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount (~5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure,the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX,XRD ,and XPS. The detailed observations will be discussed during presentation.
Date: August 2016
Creator: Ho, Yee Hsien
Partner: UNT Libraries

Defect Behaviors in Zinc Oxide and Zinc Titanates Ceramics from First Principles Computer Simulations

Description: ZnO and ZnO-TiO2 ceramics have intriguing electronic and mechanical properties and find applications in many fields. Many of these properties and applications rely on the understanding of defects and defect processes in these oxides as these defects control the electronic, catalytic and mechanical behaviors. The goal of this dissertation is to systematically study the defects and defects behaviors in Wurtzite ZnO and Ilmenite ZnTiO3 by using first principles calculations and classical simulations employing empirical potentials. Firstly, the behavior of intrinsic and extrinsic point defects in ZnO and ZnTiO3 ceramics were investigated. Secondly, the effect of different surface absorbents and surface defects on the workfunction of ZnO were studied using DFT calculations. The results show that increasing the surface coverage of hydrocarbons decreased the workfunction. Lastly, the stacking fault behaviors on ilmenite ZnTiO3 were investigated by calculating the Generalized Stacking Fault (GSF) energies using density functional theory based first principles calculations and classical calculations employing effective partial charge inter-atomic potentials. The gamma-surfaces of two low energy surfaces, (110) and (104), of ZnTiO3 were fully mapped and, together with other analysis such as ideal shear stress calculations.
Date: December 2016
Creator: Sun, Wei
Partner: UNT Libraries

Angular Analysis of a Wide-Band Energy Harvester based on Mutually Perpendicular Vibrating Piezoelectric Beams

Description: The recent advancements in electronics and the advents of small scaled instruments has increased the attachment of life and functionality of devices to electrical power sources but at the same time granted the engineers and companies the ability to use smaller sources of power and batteries. Therefore, many scientists have tried to come up with new solutions for a power alternatives. Piezoelectric is a promising material which can readily produce continuous electric power from mechanical inputs. However, their power output is dependent upon several factors such as, system natural frequency, their position in the system, the direction of vibration and many other internal and external factors. In this research the working bandwidth of the system is increased through utilizing of two different piezoelectric beam in different directions. The dependency of output power with respect to rotation angle and also the frequency shift due to the rotation angle is studied.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Mirzaabedini, Sohrab
Partner: UNT Libraries

Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection

Description: Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
Date: December 2016
Creator: Dong, Bin
Partner: UNT Libraries

Ternary Oxide Structures for High Temperature Lubrication

Description: In this research, a temperature dependent tribological investigation of selected ternary oxides was undertaken. Based on the promising results of previous studies on silver based ternary oxides, copper based ternary oxides were selected to conduct a comparative study since both copper and silver are located in the same group in the periodic table of the elements. Two methods were used to create ternary oxides: (i) solid chemical synthesis to create powders and (ii) sputtering to produce thin films. X-ray diffraction was used to explore the evolution of phases, chemical properties, and structural properties of the coatings before and after tribotesting. Scanning electron microscopy, Auger scanning nanoprobe spectroscopy, and X-ray photoelectron spectroscopy were used to investigate the chemical and morphological properties of these materials after sliding tests. These techniques revealed that chameleon coatings of copper ternary oxides produce a friction coefficient of 0.23 when wear tested at 430 °C. The low friction is due to the formation of copper tantalate phase and copper in the coatings. All sputtering coatings showed similar tribological properties up to 430 °C.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2015
Creator: Gu, Jingjing
Partner: UNT Libraries

Novel Carborane Derived Semiconducting Thin Films for Neutron Detection and Device Applications

Description: Novel carborane (B10C2H12) and aromatic compounds (benzene, pyridine, diaminobenzene) copolymers and composite materials have been fabricated by electron beam induced cross-linking and plasma enhanced chemical vapor deposition (PECVD) respectively. Chemical and electronic structure of these materials were studied using X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS). UPS suggest that the systematic tuning of electronic structure can be achieved by using different aromatic compounds as co-precursors during the deposition. Furthermore, top of valence band is composed of states from the aromatic moieties implying that states near bottom of the conduction band is derived from carborane moieties. Current- voltage (I-V) measurements on the ebeam derived B10C2HX: Diaminobenzene films suggest that these films exhibit enhanced electron hole separation life time. Enhanced electron hole separation and charge transport are critical parameters in designing better neutron voltaic devices. Recently, PECVD composite films of ortho-carborane and pyridine exhibited enhanced neutron detection efficiency even under zero bias compared to the pure ortho-carborane derived films. This enhancement is most likely due to longer electron-hole separation, better charge transport or a combination of both. The studies determining the main factors for the observed enhanced neutron detection are in progress by fabricating composite films of carborane with other aromatic precursors and by altering the plasma deposition conditions. This research will facilitate the development of highly sensitive and cost effective neutron detectors, and has potential applications in spintronics and photo-catalysis.
Date: August 2015
Creator: James, Robinson
Partner: UNT Libraries

Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys

Description: Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the interface characteristics were identified. The structure evolution of three multi-principal element alloys were investigated namely CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi. All three alloys formed a single-phase FCC structure in as-cast, cold worked and recrystallized state. No secondary phases precipitated after prolonged heat treatment or mechanical working. The multi-principal element alloys showed less strain gradient plasticity compared to pure metals like Ni during nano-indentation. This was attributed to the highly distorted lattice which resulted in lesser density of geometrically necessary dislocations (GNDs). Dislocation nucleation was studied by low load indentation along with the evaluation of activation volume and activation energy. This was ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Mridha, Sanghita
Partner: UNT Libraries

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

Description: We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better ...
Date: May 2017
Creator: Zhao, Zhenghang
Partner: UNT Libraries

Rational Design of Metal-organic Electronic Devices: a Computational Perspective

Description: Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-?, and ?-? interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d10 cyclo-[M(?-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(µ-Pz)]3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2012
Creator: Chilukuri, Bhaskar
Partner: UNT Libraries

MBE Growth and Characterization of Graphene on Well-Defined Cobalt Oxide Surfaces: Graphene Spintronics without Spin Injection

Description: The direct growth of graphene by scalable methods on magnetic insulators is important for industrial development of graphene-based spintronic devices, and a route towards substrate-induced spin polarization in graphene without spin injection. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction LEED, electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES) demonstrate the growth of Co3O4(111) and CoO(111) to thicknesses greater than 100 Å on Ru(0001) surfaces, by molecular beam epitaxy (MBE). The results obtained show that the formation of the different cobalt oxide phases is O2 partial pressure dependent under same temperature and vacuum conditions and that the films are stoichiometric. Electrical I-V measurement of the Co3O4(111) show characteristic hysteresis indicative of resistive switching and thus suitable for advanced device applications. In addition, the growth of Co0.5Fe0.5O(111) was also achieved by MBE and these films were observed to be OH-stabilized. C MBE yielded azimuthally oriented few layer graphene on the OH-terminated CoO(111), Co0.5Fe0.5O(111) and Co3O4(111). AES confirms the growth of (111)-ordered sp2 C layers. EELS data demonstrate significant graphene-to-oxide charge transfer with Raman spectroscopy showing the formation of a graphene-oxide buffer layer, in excellent agreement with previous theoretical predictions. XPS data show the formation of C-O covalent bonding between the oxide layer and the first monolayer (ML) of C. LEED data reveal that the graphene overlayers on all substrates exhibit C3V. The reduction of graphene symmetry to C3V – correlated with C-O bond formation – enables spin-orbit coupling in graphene. Consequences may include a significant band gap and room temperature spin Hall effect – important for spintronic device applications. The results suggest a general pattern of graphene/graphene oxide growth and symmetry lowering for graphene formation on the (111) surfaces of rocksalt-structured oxides.
Date: August 2017
Creator: Olanipekun, Opeyemi B
Partner: UNT Libraries

Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Description: Wetting of a substance has been widely investigated since it has many applications to many different fields. Wetting principles can be applied to better select cleans for front end of line (FEOL) and back end of line (BEOL) cleaning processes. These principles can also be used to help determine processes that best repel water from a semiconductor device. It is known that the value of the dielectric constant in an insulator increases when water is absorbed. These contact angle experiments will determine which processes can eliminate water absorption. Wetting is measured by the contact angle between a solid and a liquid. It is known that roughness plays a crucial role on the wetting of a substance. Different surface groups also affect the wetting of a surface. In this work, it was investigated how wetting was affected by different solid surfaces with different chemistries and different roughness. Four different materials were used: silicon; thermally grown silicon dioxide on silicon; chemically vapor deposited (CVD) silicon dioxide on silicon made from tetraethyl orthosilicate (TEOS); and organosilicate glass (OSG) on silicon. The contact angle of each of the samples was measured using a goniometer. The roughness of the samples was measured by atomic force microscopy (AFM). The chemistry of each of the samples were characterized by using X-ray photoelectron spectroscopy (XPS) and grazing angle total attenuated total reflection Fourier transform infrared spectroscopy (FTIR/GATR). Also, the contact angle was measured at the micro scale by using an environmental scanning electron microscope (ESEM).
Date: December 2009
Creator: Martinez, Nelson
Partner: UNT Libraries