8 Matching Results

Search Results

Advanced search parameters have been applied.

Excitation Function for the 74Se(18O,p3n) Reaction

Description: The 74Se(18O,p3n)88gNb excitation function was measured and a maximum cross section of 495+-5 mb was observed at and 18O energy of 74.0 MeV. Experimental cross sections were compared to theoretical calculations using the computer code ALICE-91 and the values were found to be in good agreement. The half life of 88gNb was determined to be around 14.56+-0.11 min.
Date: February 2, 2009
Creator: Gates, Jacklyn; Dragojevic, Irena; Dvorak, Jan; Ellison, Paul; Gregorich, Kenneth; Stavsetra, Liv et al.
Partner: UNT Libraries Government Documents Department

The influence of projectile neutron number in the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions

Description: Four isotopes of rutherfordium,254-257Rf, were produced by the 208Pb(48Ti, xn)256-xRf and 208Pb(50Ti, xn)258-xRf reactions (x = 1, 2) at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Excitation functions were measured for the 1n and 2n exit channels. A maximum likelihood technique, which correctly accounts for the changing cross section at all energies subtended by the targets, was used to fit the 1n data to allow a more direct comparison between excitation functions obtained under different experimental conditions. The maximum 1n crosssections of the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions obtained from fits to the experimental data are 0.38 +/- 0.07 nb and 40 +/-5 nb, respectively. Excitation functions for the 2n exit channel were also measured, with maximum cross sections of nb for the 48Ti induced reaction, and 15.7 +/- 0.2 nb for the 50Ti induced reaction. The impact of the two neutron difference in the projectile on the 1n cross section is discussed. The results are compared to the Fusion by Diffusion model developed by Swiatecki, Wilczynska, and Wilczynski.
Date: July 11, 2008
Creator: Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Garcia, M.A.; Gates, J.M. et al.
Partner: UNT Libraries Government Documents Department

Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260BhReaction

Description: The lightest isotope of Bh known was produced in the new {sup 209}Bi({sup 52}Cr,n){sup 260}Bh reaction at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. Positive identification was made by observation of eight correlated alpha particle decay chains in the focal plane detector of the Berkeley Gas-Filled Separator. {sup 260}Bh decays with a 35{sub -9}{sup +19} ms half-life by alpha particle emission mainly by a group at 10.16 MeV. The measured cross section of 59{sub -20}{sup +29} pb is approximately a factor of four larger than compared to recent model predictions. The influences of the N = 152 and Z = 108 shells on alpha decay properties are discussed.
Date: May 7, 2007
Creator: Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Garcia, Mitch A.; Gates, Jacklyn M.; Sudowe, Ralf et al.
Partner: UNT Libraries Government Documents Department

Comparison of Complementary Reactions in the Production of Mt

Description: The new reaction 208Pb(59Co,n)266Mt was studied using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. A cross section of 7.7+5.2-3.3 pb was measured at a compound nucleus excitation energy of 14.9 MeV. The measured decay properties of 266Mt and its daughters correspond well with existing data. We compare this experimental result to transactinide compound nucleus formation model predictions, and the previously studied 209Bi(58Fe,n)266Mt reaction.
Date: January 21, 2009
Creator: Nelson, Sarah; Gregorich, Kenneth; Dragojevic, Irena; Ellison, Paul; Garcia, Mitch Andre; Gates, Jacklyn et al.
Partner: UNT Libraries Government Documents Department

Influence of projectile neutron number on cross section in cold fusion reactions

Description: Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.
Date: September 1, 2007
Creator: Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A. et al.
Partner: UNT Libraries Government Documents Department

Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn)

Description: Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070+1100/-760 pb was measured at an excitation energy of 16.0 +- 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660+450/-370 pb was measured at 22.0 +- 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480+1750/-1370 pb at an excitation energy of 16.0 +- 1.6 MeV, in agreement with previous values [F. P. Hebberger, et al., Eur. Phys. J. A 12, 57 (2001)]. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier.
Date: September 29, 2008
Creator: Gates, Jacklyn M.; Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Dullmann, Christoph E.; Ellison, Paul A. et al.
Partner: UNT Libraries Government Documents Department

Extraction of niobium and tantalum isotopes using organophosphorus compounds - Part I - Extraction of 'carrier-free' metal concentrations from HCl solutions

Description: The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments is to find a system that demonstrates selectivity between the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments were performed at the trace level (10-16 M Nb or Ta) using hydrochloric acid with concentrations ranging from 1 - 11 M and short-lived isotopes of Nb and Ta produced in nuclear reactions. When HDEHP was used as the extractant, the Nb extraction yield decreased with increasing acid concentrations above 6 M, while the amount of Ta extracted remained over 75percent for all acid concentrations studied. Tantalum was found to be extracted by BEHP at acid concentrations above 6 M, while niobium was not significantly extracted. The data obtained are used as the basis to discuss the speciation of Nb and Ta under the conditions studied and to evaluate possible extraction mechanisms.
Date: September 1, 2008
Creator: Gates, Jacklyn; Sudowe, Ralf; Stavsetra, Liv; Ali, Mazhar; Calvert, Michael; Dragojevic, Irena et al.
Partner: UNT Libraries Government Documents Department

New Superheavy Element Isotopes: 242Pu(48Ca,5n)285114

Description: The new, neutron-deficient, superheavy element isotope {sup 285}114 was produced in {sup 48}Ca irradiations of {sup 242}Pu targets at a center-of-target beam energy of 256 MeV (E* = 50 MeV). The {alpha} decay of {sup 285}114 was followed by the sequential {alpha} decay of four daughter nuclides, {sup 281}Cn, {sup 277}Ds, {sup 273}Hs, and {sup 269}Sg. {sup 265}Rf was observed to decay by spontaneous fission. The measured {alpha}-decay Q values were compared with those from a macroscopic-microscopic nuclear mass model to give insight into superheavy element shell effects. The {sup 242}Pu({sup 48}Ca,5n){sup 285}114 cross section was 0.6{sub -0.5}{sup +0.9} pb.
Date: October 22, 2010
Creator: Ellison, Paul A; Gregorich, Kenneth E.; Berryman, Jill S.; Bleuel, Darren L.; Clark, Roderick M.; Dragojevic, Irena et al.
Partner: UNT Libraries Government Documents Department