78 Matching Results

Search Results

Advanced search parameters have been applied.

Integrated Kinetic Simulation of Laser-Plasma Interactions, Fast-Electron Generation and Transport in Fast Ignition

Description: We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.
Date: November 16, 2009
Creator: Kemp, A; Cohen, B & Divol, L
Partner: UNT Libraries Government Documents Department

Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

Description: Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.
Date: October 17, 2005
Creator: Cohen, B I; Divol, L; Langdon, A B & Williams, E A
Partner: UNT Libraries Government Documents Department

Characterization of High-Temperature Laser-Produced Plasmas Using Thomson Scattering

Description: Ultraviolet Thomson scattering has been fielded at the Omega Laser Facility to achieve accurate measurements of the plasma conditions in laser-produced high-temperature plasmas. Recent applications to hohlraum targets that have been filled with CH gas or SiO{sub 2} foams have demonstrated a new high temperature plasma regime of importance to laser-plasma interaction studies in a strongly damped regime such as those occurring in indirect drive inertial confinement fusion experiments. The Thomson scattering spectra show the collective ion acoustic features that fit the theory for two ion species plasmas and from which we infer the electron and ion temperature. We find that the electron temperature scales from 2-4 keV when increasing the heater beam energy into the hohlraum from 8-17 kJ, respectively. Simultaneous measurements of the stimulated Raman scattering from a green 527 nm interaction beam show that the reflectivity decreases from 20% to 1% indicating that this instability is strongly damped at high temperatures. These findings support green laser beams as possible driver option for laser-driven fusion experiments.
Date: September 16, 2005
Creator: Glenzer, S H; Froula, D H; Ross, S; Niemann, C; Meezan, N & Divol, L
Partner: UNT Libraries Government Documents Department

A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility

Description: By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large scale hohlraum experiments with two tunable wavelengths, and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.
Date: December 16, 2010
Creator: Michel, P; Divol, L; Town, R & Rosen, M
Partner: UNT Libraries Government Documents Department

Predictive three dimensional modeling of Stimulated Brillouin Scattering in ignition-scale experiments

Description: The first three-dimensional (3D) simulations of a high power 0.351 {micro}m laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D linear kinetic modeling of Stimulated Brillouin scattering reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelop down to the micron scale speckles. These simulations accurately predict the strong reduction of SBS measured when polarization smoothing is used.
Date: November 7, 2007
Creator: Divol, L; Berger, R; Meezan, N; Froula, D H; Dixit, S; Suter, L et al.
Partner: UNT Libraries Government Documents Department

Examination of scattering volume aligment in Thomson scattering off of a shock front in argon

Description: Thomson scattering in argon gas successfully probed the region of plasma just behind the shock front. The instantaneous shock velocity can be inferred from the duration of the signal, taking into account the size and shape of the scattering volume. Possible misalignment of the probe beam and spectrometer slits greatly affects the size and shape of the scattering volume, and therefore affects the calculation of the instantaneous shock velocity.
Date: July 26, 2007
Creator: Reighard, A B; Froula, D H; Drake, R P; Ross, J S & Divol, L
Partner: UNT Libraries Government Documents Department

Three dimensional modeling of Laser-Plasma interaction: benchmarking our predictive modeling tools vs. experiments

Description: We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA[2]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d[3]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, whole beam three-dimensional linear kinetic modeling of stimulated Brillouin scattering reproduces quantitatively the experimental measurements(SBS thresholds, reflectivity values and the absence of measurable SRS). This good agreement was made possible by the recent increase in computing power routinely available for such simulations. These simulations accurately predicted the strong reduction of SBS measured when polarization smoothing is used.
Date: November 8, 2007
Creator: Divol, L; Berger, R; Meezan, N; Froula, D H; Dixit, S; Suter, L et al.
Partner: UNT Libraries Government Documents Department

Imaging Thomson scattering measurements of radiatively heated Xe

Description: Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.
Date: May 1, 2012
Creator: Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H et al.
Partner: UNT Libraries Government Documents Department

Thomson scattering techniques in laser produced plasmas

Description: Thomson scattering has been shown to be a valuable technique for measuring the plasma conditions in laser produced plasmas. Measurement techniques are discussed that use the ion-acoustic frequency measured from the collective Thomson-scattering spectrum to extract the electron temperature, ion temperature, plasma flow, and electron density in a laser produced plasma. In a recent study, they demonstrated a novel Thomson-scattering technique to measure the dispersion of ion-acoustic fluctuations that employing multiple color Thomson-scattering diagnostics. They obtained frequency-resolved Thomson-scattering spectra of the two separate thermal ion-acoustic fluctuations with significantly different wave vectors. This new technique allows a simultaneous time resolved local measurement of electron density and temperature. The plasma fluctuations are shown to become dispersive with increasing electron temperature. Furthermore, a Thomson-scattering technique to measure the electron temperature profile is presented where recent experiments have measured a large electron temperature gradient (Te = 1.4 keV to Te = 3.2 keV over 1.5-mm) along the axis of a 2-mm long hohlraum when heated asymmetrically.
Date: May 4, 2006
Creator: Froula, D H; Ross, J S; Divol, L; MacKinnon, A J; Sorce, C & Glenzer, S H
Partner: UNT Libraries Government Documents Department

Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

Description: The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.
Date: September 20, 2005
Creator: Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D et al.
Partner: UNT Libraries Government Documents Department

Laser-plasma interaction in ignition relevant plasmas: benchmarking our 3D modelling capabilities versus recent experiments

Description: We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.
Date: September 27, 2007
Creator: Divol, L; Froula, D H; Meezan, N; Berger, R; London, R A; Michel, P et al.
Partner: UNT Libraries Government Documents Department

Laser-beam propagation in high temperature hohlraum plasmas

Description: The authors have developed a new target platform to study propagation and backscatter of a frequency-doubled (2{omega}) laser beam through large-scale length plasmas at ignition-design densities, intensities and temperatures above 3 keV. The plasma is created by heating a gas filled hohlraum target with 37 heater beams that deliver a total energy of up to 15 kJ in a 1 ns square pulse. They measure a factor of two higher temperatures than in open geometry gasbag targets investigated earlier. This new temperature regime with a measured beam transmission of up to 80% suggests we can expect good laser coupling into ignition hohlraums at the National Ignition Facility (NIF) using 2{omega} light.
Date: September 15, 2005
Creator: Niemann, C.; Froula, D.; Divol, L.; Meezan, N.; Jones, O.; Ross, R. et al.
Partner: UNT Libraries Government Documents Department

Thomson scattering diagnostic for the measurement of ion species fraction

Description: Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.
Date: May 1, 2012
Creator: Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W et al.
Partner: UNT Libraries Government Documents Department

Observation of relativistic effects in collective Thomson scattering

Description: We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.
Date: October 8, 2009
Creator: Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L et al.
Partner: UNT Libraries Government Documents Department

Green (2(omega)) Laser Beam propagation in high-temperature Hohlraum Plasmas

Description: We demonstrate propagation and small backscatter losses of a frequency-doubled (2{omega}) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of two higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2{omega} laser beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggests that good laser coupling into fusion hohlraums using 2{omega} light is possible.
Date: October 26, 2007
Creator: Niemann, C; Berger, R; Divol, L; Froula, D H; Jones, O S; Kirkwood, R K et al.
Partner: UNT Libraries Government Documents Department

Comparison of Raman Scattering Measurements and Modeling in NIF Ignition Experiments

Description: Recent NIF indirect-drive experiments have shown significant Raman scattering from the inner beams. NIF data has motivated improvements to rad-hydro modeling, leading to the 'high flux model' [M. D. Rosen et al., HEDP 7, 180 (2011)]. Cross-beam energy transfer [P. A. Michel et al., Phys. Plasmas 17, 056305 (2010] in the laser entrance hole is an important tool for achieving round implosions, and is uniformly distributed across the laser spot in rad-hydro simulations (but not necessarily in experiments). We find the Raman linear gain spectra computed with these plasma conditions agree well in time-dependent peak wavelength with the measured data, especially when overlapping laser-beam intensities are used. More detailed, spatially non-uniform modeling of the cross-beam transfer has been performed. The resulting gains better follow the time history of the measured backscatter. We shall present the impact of spatially non-uniform energy transfer on SRS gain. This metric is valid when amplification is in a linear regime, and so we shall also present an assessment of whether electron trapping in Langmuir waves can play a role in these shots.
Date: November 4, 2011
Creator: Strozzi, D J; Hinkel, D E; Williams, E A; Town, R J; Michel, P A; Divol, L et al.
Partner: UNT Libraries Government Documents Department