12 Matching Results

Search Results

Advanced search parameters have been applied.

BBAT: Bunch and bucket analysis tool

Description: BBAT is written to meet the need of an interactive graphical tool to explore the longitudinal phase space. It is driven for testing new ideas or new tricks quickly. It is especially suitable for machine physicists or operation staff as well both in the control room during machine studies or off-line to analyze the data. The heart of the package contains a set of c-routines to do the number crunching. The graphics part is wired with scripting language tcl/tk and BLT. The c-routines are general enough that one can write new applications such as animation of the bucket as a machine parameter varies via a sliding scale. BBAT deals with single rf system. For double rf system, one can use Dr. BBAT, which stands for Double rf Bunch and Bucket Analysis Tool. One usage of Dr. BBAT is to visualize the process of bunch coalescing and flat bunch creation.
Date: May 1, 1995
Creator: Deng, D.P.
Partner: UNT Libraries Government Documents Department

Rebucketing after transition in RHIC

Description: Rebucketing in the Relativistic Heavy Ion Collider, RHIC, describes the process of moving the beam from the 26MHz accelerating system to the 196MHz storage system with as little beam loss as possible. This puts a stringent requirement on the beam longitudinal area done at top energy. The ample bucket space after, but not too close to, transition is explored by computer simulation to relax such stringent conditions.
Date: May 1, 1995
Creator: Deng, D.P. & Peggs, S.
Partner: UNT Libraries Government Documents Department

Conceptual design of the 26.7 MHz RF system for RHIC

Description: The 26.7 MHz (harmonic No. h=342) RF system will be used to capture the injected bunched beam from the AGS and accelerate it to a kinetic energy of up to 250 GeV for protons; 100 GeV/u for gold ions. All ions except protons cross transition, and are finally transferred to a storage RF system working at 196 MHz. Each RHIC ring will be provided with two single-ended capacitively loaded quarter-wave cavities; each of these can be dynamically tuned by 100 kHz to compensate for the change in speed of the beam, and can deliver at least 200 kV voltage. A 100 kW tetrode amplifier with local RF feedback is directly coupled to the cavity to minimize phase delay. Prototypes of cavity and amplifier have been built and first test results are presented.
Date: June 1, 1993
Creator: Rose, J.; Deng, D. P.; McKenzie-Wilson, R.; Pirkl, W. & Ratti, A.
Partner: UNT Libraries Government Documents Department

Rf systems for RHIC

Description: The RHIC rf systems must capture the injected beam, accelerate it through transition to top energy, shorten the bunches prior to rebucketing, and store the beam for 10 hours in the presence of strong intra-beam scattering. These different functions are met by three independent systems. An accelerating system at 26.7 Mhz (h = 342), a storage system at 196.1 MHz (h = 2508), and a wideband system for the damping of injection efforts.
Date: May 1, 1995
Creator: Rose, J.; Brodowski, J.; Connolly, R.; Deng, D.P.; Kwiatkowski, S.; Pirkl, W. et al.
Partner: UNT Libraries Government Documents Department

Design of the 26.7 MHz rf cavity for RHIC

Description: The accelerating system for RHIC operates at 26.7 MHz (h = 342) and must capture the injected beam, accelerate it to top energy, and shorten the bunches prior to rebucketing into the storage (h = 2508) system. These different functions set the design parameters of the cavity. The frequency of 26.7 MHz has been chosen in order to provide large enough buckets to capture the injected beam from the AGS and a large linear region for debunching during a bunch rotation at top energy. Provision of the large linear region also dictates the voltage requirement of 400 kV per cavity. The cavity must be tuned {approximately}90 kHz to compensate for the change in speed of the gold beam.
Date: May 1, 1995
Creator: Rose, J.; Brodowski, J.; Deng, D.P.; Kwiatkowski, S.; Pirkl, W. & Ratti, A.
Partner: UNT Libraries Government Documents Department

Commissioning the new high power rf system for the AGS with high intensity beam

Description: A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.
Date: August 1, 1994
Creator: Brennan, J. M.; Ciardullo, D. J.; Deng, D. P; Hayes, T.; Onillon, E.; Otis, A. et al.
Partner: UNT Libraries Government Documents Department

An impedance model of the relativistic heavy ion collider, RHIC

Description: This paper is an abbreviated version of a comprehensive and detailed analysis of RHIC instabilities soon to be published as a RHIC project report. It emphasises longitudinal impedance modeling and design choices in RHIC, wile a companion paper emphasises instability calculations.
Date: August 1, 1994
Creator: Peggs, S.; Mane, V.; MacKay, W. W.; Blaskiewicz, M.; Connolly, R.; Deng, D. P. et al.
Partner: UNT Libraries Government Documents Department

Physics of the AGS-to-RHIC transfer line commissioning

Description: This paper presents beam physics results from the fall 1995 AGS-to- RHIC (ATR) transfer line commissioning run with fully ionized gold nuclei. We first describe beam position monitors and transverse video profile monitors, instrumentation relevant to measurements performed during this commissioning. Measured and corrected beam trajectories demonstrate agreement with design optics to a few percent, including optical transfer functions and beamline dispersion. Digitized 2- dimensional video profile monitors were used to measure beam emittance, and beamline optics and AGS gold ion beam parameters are shown to be comparable to RHIC design requirements.
Date: July 1, 1996
Creator: Satogata, T.; Ahrens, L.; Brennan, M.; Brown, K.; Clifford, T.; Connolly, R. et al.
Partner: UNT Libraries Government Documents Department