27 Matching Results

Search Results

Advanced search parameters have been applied.

Isotope tracers of organic carbon during artificial recharge

Description: This project developed an analytical technique for measuring the isotope abundance for 14C and 13C in total organic carbon (TOC) in order to test whether these measurements can trace TOC interaction with sedimentary material at the bottom of rivers and lakes, soils, and subsurface aquifer rocks.
Date: February 9, 1998
Creator: Davisson, M.L.
Partner: UNT Libraries Government Documents Department

Comparative isotope hydrology study of groundwater sources and transport in the three cascade volcanoes of Northern California

Description: Quaternary-age volcanic peaks of Mt. Lassen, Mt. Shasta, and Medicine Lake Volcano preferentially recharge and transport large volumes of annual precipitation into mega- scale channels hosted in underlying volcanic layers. At the terminus of laterally extensive lava flows, or in deep incisions of these layers, groundwater emerges as large volume cold springs. The combined discharge of these springs contributes half the annual storage capacity of Shasta Reservoir, and is utilized to generate 2000 gigawatts of hydroelectric power each year. Moreover, the springs provide a natural habitat for many rare and endangered species. In the Hat Creek Valley, located north of Mt. Lassen, Rose et al. (1996) showed that the low d 18 O discharge of large volume springs at Rising River and Crystal Lake originates from snow melt in the high elevation, high precipitation region surrounding Lassen Peak. Groundwater transport in this basin is enhanced by the occurrence of the Quaternary Hat Creek basalt flow, which extends nearly the entire length of Hat Creek Valley. In contrast, the d 18 O values of large- volume springs that discharge in the Mt. Shasta region indicate a larger percentage of local recharge at lower elevations since the high elevation snow melt on the volcano is depleted by >1 per mil relative to the largest springs. The d 18 O value of the Fall River Springs (FRS) system is similar to small springs that occur at high elevations on Medicine Lake Volcano. The large volume of the FRS discharge coupled with a lack of surficial drainages in this area indicates that a large percentage of the annual precipitation over an ~750 mi 2 area of the Medicine Lake volcanic plateau goes to recharge the FRS aquifer system. Groundwater transport to the FRS is enhanced by the occurrence of the 10 kyr Giant Crater ...
Date: September 1, 1997
Creator: Davisson, M.L. & Rose, T.P.
Partner: UNT Libraries Government Documents Department

Preliminary report on the groundwater isotope study in the Brentwood Region

Description: Under contract with the City of Brentwood and auxiliary support by the East Contra Costa Irrigation District (ECCID), a preliminary research assessment of the groundwater resources beneath the Brentwood region is complete. The research was performed by an isotope geochemistry approach rather than traditional hydrogeological methods. The isotope approach is inexpensive relative to the traditional methods and has been used here mostly as a tracer that details the source, migration paths, and migration rates of existing groundwater supplies. In addition, the isotope results provide a quantitative framework in which to answer questions important to Brentwood including: (1) What is the long-term and short-term sustainability of the groundwater resources relative to current urban growth projections? (2) How can the good water quality be maximized in groundwater wells under short and long-term groundwater use schemes? (3) What underground areas exist within the Brentwood region that indicate untapped groundwater supplies that may provide plentiful, good quality water? This preliminary report focuses only on the first question. The second and third questions will be addressed in the final report to be completed by January 1, 1995. Furthermore, the conclusions in this preliminary report of how much groundwater is available for use will be incorporated into the Groundwater Management Plan currently being developed by the ECCID in conjunction with the City of Brentwood.
Date: October 12, 1994
Creator: Davisson, M.L. & Campbell, K.R.
Partner: UNT Libraries Government Documents Department

Final report on the Groundwater Isotope Project in the Brentwood Region of East Contra Costa County, California

Description: Groundwater in the Brentwood region has been characterized using isotope hydrology techniques and have addressed resource issues regarding the future sustainability of groundwater, maintenance of existing supplies, and exploration of new supplies. The stable isotopes of oxygen and hydrogen indicate that groundwater is derived from two sources: ancient rain recharge, and recharge of agricultural irrigation water. Rain derived groundwater ages range from <1000 to {approximately}12,000 years old. Agricultural recharge groundwater is <80 years and has recharged much of the basin on average to {approximately}125 fbs. The agricultural water recharges >10 times faster than natural rain water and hence, represents the principal recharge component. The agricultural recharge at the present time provides groundwater quantities to the basin that exceed the yearly water supply demand. With increasing urban development and retiring agricultural land, the availability of groundwater will decrease. Safe yield projections for the groundwater have been modeled to show that safe groundwater yields range between 30 to 120 acre-ft/mi{sup 2} per year for a population of 70,000 people. This will only account for {approximately}3 to 11 % of the total water demand. Furthermore, much of this groundwater may need well head treatment for water quality problems.
Date: May 1, 1995
Creator: Davisson, M.L. & Campbell, K.R.
Partner: UNT Libraries Government Documents Department

NanoSIMS analysis of Bacillus spores for forensics

Description: The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to directly image samples as well as depth profile samples. ...
Date: February 23, 2010
Creator: Weber, P K; Davisson, M L & Velsko, S P
Partner: UNT Libraries Government Documents Department

Dual measurement of <sup>13</sup>C and <sup>14</sup> isotopic composition to identify biodegradation of fuel hydrocarbons at the LLNL gasoline spill site

Description: Samples of groundwater were collected in the spring of 1996 for *jC and 14C determinations of dissolved inorganic carbon (DIC). A sample of the FHC collected during steam injection was also analyzed. Groundwater was collected after appropriate pumping times in I-CHEM@l25ml amber glass´┐Ż bottles fitted with l/8 inch teflon-coated rubber septa inserted into threaded caps. Bottles were filled leaving approximately a two inch head space, treated with 4 drops of saturated HgC12 solution, and stored upside- down refrigerated until analyses. Analyses were performed within 48 hours of collection. Two duplicates were collected using evacuated glass cylinders equipped with greased stopcocks and a l/4 inch rubber septa plug. Results of these duplicate samples were identical to those collected in the septa bottles (see Table 1).
Date: November 6, 1998
Creator: Davisson, M. L. & Rose, T. P.
Partner: UNT Libraries Government Documents Department

Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

Description: Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.
Date: January 1, 1995
Creator: Davisson, M.L. & Criss, R.E.
Partner: UNT Libraries Government Documents Department

Environmental isotope investigation of groundwater flow in the Honey Lake Basin, California and Nevada

Description: The hydrology of Honey Lake Basin was studied using environmental isotope measurements of approximately 130 water samples collected during 1995 and 1996. The principal analytical methods included hydrogen, oxygen and carbon stable isotope ratio measurements, radiocarbon and tritium dating, and measurements of dissolved noble gas abundances.
Date: July 1, 1997
Creator: Rose, T.P.; Davisson, M.L.; Hudson, G.B. & Varian, A.R.
Partner: UNT Libraries Government Documents Department

Report on the feasibility of using isotopes to source and age-date groundwater in Orange County water district`s Forebay region

Description: From March to September 1995, the Isotope Sciences Division of Lawrence Livermore National Laboratory performed isotopic measurements on water in the Orange County Forebay region. The goal was to test the applicability of isotope techniques for determining the current groundwater flow paths and flow rates in the OCWD spreading facilities. Successful results could then be used to predict the fate of proposed reclaimed waste water recharge. Stable isotope measurements in surface waters and groundwaters in the Forebay region of the Orange County groundwater basin provided a general source indicator. The data defined three general groups: (1) groundwater derived from recharged Santa Ana River water (SAR),(2) groundwater resulting from a mixture of recharged Colorado River water and the SAR, and (3) groundwater recharged from the Santiago basin area. In the first group of data, recharge directly from the SAR flow was not readily distinguishable from groundwater recharged via the spreading ponds. Some groundwater samples from Forebay wells showed significant temporal variability in stable isotope values, while others remained constant throughout the study period. The temporal changes in the groundwater stable isotope signatures are believed to be controlled by similar variations in the stable isotope signatures of the surface water recharge. With further sampling, these seasonal isotopic variations may provide a viable tracer for young (<2 years) groundwater.
Date: May 1, 1996
Creator: Davisson, M.L.; Hudson, G.B.; Niemeyer, S.; Beiriger, J. & Herndon, R.
Partner: UNT Libraries Government Documents Department

Compilation of data for isotope mapping of groundwater in the Central Valley of California, 1993-1995

Description: A major stable isotope mapping project is underway that will provide important baseline information to the State of California in management of their groundwater resources. The results represent a new technological application using isotope hydrology to better understand and predict the sustainability of California`s groundwater supply for the future. This project is driven by the fact that Californians inhabit a semi-arid region of seasonal precipitation, but have created a lifestyle and economic infrastructure requiring a sub-tropical climate. They have accomplished this by engineering systems that store and divert alpine runoff, and by utilizing a large, productive alluvial aquifer. In the past, both of these resources appeared to be unlimited. Today, water shortages are recognized, regardless of drought conditions. Because Californians maintain their current practices of prolific water use, the deep-seated competition between agricultural users and urban consumers has been amplified. This has been aggravated by the acquisition of one-third of the available surface water resources for maintenance of aquatic habitats. The State of California accepts and encourages the use of groundwater to supplement these diverse water demands. Stable isotope imaging of the groundwater resources has proven to be the most economical and effective means to diagnose the health of the giant alluvial aquifer of the Central Valley. Augmented by radiocarbon analysis and nitrate determinations, stable isotope data can be used to clearly distinguish groundwater recharged from natural or anthropogenic sources. Isotope maps delineate (1) the geographic distribution of various groundwater masses and of preferential recharge zones, (2) the sources and extent of non-point source pollution, and (3) the locations and rates of lateral flow channels. Different recharge rates of natural and modem groundwater bodies can be used to characterize safe yield parameters for aquifers.
Date: May 1, 1995
Creator: Davisson, M.L.; Criss, R.E. & Campbell, K.R.
Partner: UNT Libraries Government Documents Department

Estimating Annual Precipitation in the Fenner Basin of the Eastern Mojave Desert, California

Description: Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Previous attempts to create precipitation-elevation functions in western Nevada have been difficult and result in large uncertainty. In the WRD data analysis, the effect of geographic scale on the precipitation-elevation function was overlooked. This contributed to an erroneous Maxey-Eakin recharge estimate.
Date: May 15, 2000
Creator: Davisson, M.L. & Rose, T.P.
Partner: UNT Libraries Government Documents Department

Summary of Age-Dating Analysis in the Fenner Basin, Eastern Mojave Desert, California

Description: Stable isotopes of oxygen (oxygen-18) and hydrogen (deuterium) in water were measured to determine recharge sources for Fenner Basin groundwater. The deuterium and oxygen-18 signatures (reported as {delta}D and {delta}{sup 18}O values) ranged from -11.9 to -9.3 per mil. The more negative values originate from high elevation recharge in the New York Mountains and were also observed in the northern and eastern parts of the groundwater basin. less negative values were observed in the Providence Mountains along the western part of the basin. Groundwater collected in the Fenner Gap (i.e. Project Area) had signatures between -10.6 and -10.9 per mil, suggesting a mixture of recharge from both northern, western, and probably local recharge areas in the basin. The annual contribution of groundwater recharge to Fenner Gap from the Clipper, Marble, and Old Woman mountains is still inconclusive due to lack of isotopic data. Isotopic signatures of mean annual precipitation collected by Friendman and others (1992) at Mitchell Caverns, as well as recently recharged groundwater in the Providence and New York mountains, are similar to the isotopic values in Fenner Gap groundwater. This indicates that this groundwater has a Holocene age (less than 10,000 years old), since groundwater recharged during the Pleistocene had isotopic signatures significantly more negative than today due to past global cooling.
Date: June 1, 2000
Creator: Davisson, M.L.
Partner: UNT Libraries Government Documents Department

A Calibrated Maxey-Eakin Curve for the Fenner Basin of the Eastern Mojave Desert, California

Description: Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin, which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Recharge rates are estimated on the basis that some fraction of annual precipitation will recharge, and that fraction will increase with increasing elevation. This results in a hypothetical curve relating annual groundwater recharge to annual precipitation. Field validation of recharge rates is critical in order to establish credibility to any estimate. This is due to the fact that the Maxey-Eakin model is empirical. An empirical model is derived from practical experience rather than basic theory. Therefore, a validated Maxey-Eakin model in one groundwater basin does not translate to a different one. In the WRD's Maxey-Eakin model, they used a curve calibrated against three locations in western Nevada and applied it to ...
Date: May 15, 2000
Creator: Davisson, M.L. & Rose, T.P.
Partner: UNT Libraries Government Documents Department

Maxey-Eakin Methods for Estimating Groundwater Recharge in the Fenner Watershed, Southeastern California

Description: Recent review comments by the US Geological Survey, Water Resources Division on the Cadiz Groundwater Storage and Dry-Year Supply program Draft Environmental Planning Report were accompanied by an independent recharge estimate to the Fenner Basin based on a Maxey-Eakin method. The following report has analyzed WRD's recharge estimates and concludes that those results greatly underestimate annual recharge and lack credibility. Among the reasons outlined are (1) WRD's lack of geographic scale and context when analyzing precipitation-elevation data, (2) WRD's use of an uncalibrated Maxey-eakin model, and (3) WRD's lack of direct observational experience in the eastern Mojave-Fenner Basin region. This report presents a more exhaustive analysis of data, supported by direct field observations, and estimates recharge using a calibrated Maxey-Eakin model. This report concludes that the possible range in annual groundwater replenishment rates to the Fenner Basin are between 7864 acre-ft and 29,185 acre-ft. The lower limit is a worst-case-scenario. This range is consistent with original recharge estimates calculated and presented in the Cadiz Groundwater Storage and Dry-Year Supply Program Draft Environmental Planning Report.
Date: May 15, 2000
Creator: Davisson, M.L. & Rose, T.P.
Partner: UNT Libraries Government Documents Department

Discussion Regarding Sources and Ages of Groundwater in Southeastern California

Description: A planned groundwater storage project for future drought relief has been assessed in the Fenner Gap area of the Fenner, Cadiz, and Bristol watershed region of southeastern California. Questions regarding the source and age of groundwater beneath the proposed project area were resolved using natural isotope abundances measured at LLNL. The report presents data, briefly summarizes conclusions of that data, and records correspondence with the sponsor Geosciences Support Services Inc.
Date: March 3, 2000
Creator: Davisson, M.L.
Partner: UNT Libraries Government Documents Department

Preliminary report on the stable isotope imaging and characterization of surface and ground water resources in the southern Sacramento Valley

Description: This document contains information about the water resources in Sacramento. The project considers isotopic characterization of groundwater and the environmental effects of the misuse of water resources. In particular, the study looks at the effects extensive agriculture and the overdrafting of groundwater.
Date: November 1, 1993
Creator: Davisson, M. L.; Criss, R. E. & Campbell, K. R.
Partner: UNT Libraries Government Documents Department

Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

Description: In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (&gt;1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.
Date: October 14, 1999
Creator: Davisson, M L; Koester, C J & Moran, J E
Partner: UNT Libraries Government Documents Department

Preliminary report on isotope abundance measurements in groundwater samples from the Talbert Injection Barrier Area, Orange County Water District

Description: This report discusses isotope abundance measurements made on a collection of groundwater samples from the Orange County Water District. The water samples were collected in May, 1994 as part of a preliminary study conducted by LLNL to assess the feasibility of tracing and dating reclaimed water used in the Talbert Injection Barrier. A set of samples were collected both near to and far from the barrier and also at different depths in available monitoring wells. A variety of elements were selected for isotopic analysis; hydrogen (tritium), helium, neon, carbon, chlorine and strontium. The tritium abundance combined with the {sup 3}He and {sup 20}Ne abundance provides a method for age dating young (< 40 yr.) groundwater. The abundance of {sup 14}C provides an age dating technique for older (1,000--50,000 yr.) groundwater. The concentrations of {sup 36}Cl and {sup 87}Sr/{sup 86}Sr give information on sea water mixing and water-rock chemical interactions.
Date: February 1, 1995
Creator: Hudson, G.B.; Davisson, M.L.; Velsko, C.; Niemeyer, S.; Esser, B. & Beiriger, J.
Partner: UNT Libraries Government Documents Department

Isotope tracer approaches for characterizing artificial recharge and demonstrating regulatory compliance

Description: Potable reuse of groundwater from wastewater origins requires new methods to quantify proposed regulatory criteria such as subsurface residence times, dilution, and water quality transitions. Isotope tracers oxygen-18 ({sup 18}O), tritium ({sup 3}H), dissolved noble gases, and radiocarbon ({sup 14}C) have been used together in Orange County to age-date groundwater, quantify mixing, and characterize changes in total organic carbon (TOC). Simultaneous measurements of {sup 3}H and helium-3 ({sup 3}He) are used to determine groundwater ages between 1 and 40 years with uncertainties of plus/minus one year. These ages map preferred groundwater flowpaths and identify groundwater ages of less than or equal to 1 year. Wells recharged from the Anaheim Lake spreading basin were used to monitor arrival times and dilution of 6000 acre-ft of {sup 18}O-distinct Colorado River (COR) water introduced during a controlled recharge experiment. In addition, isotopically enriched Xe was introduced into the basin to quantify COR dilution of greater than 90%. The COR arrived at 7 wells between 30 and 200 days after recharge commenced. The COR was diluted up to 90% at distances and depths less than 1000 feet from the lake. Results suggest that dilution of 50% is obtained within 6 months from time or recharge. {sup 14}C measured in TOC of Anaheim Lake bottom water was 3 pmc higher than the DOC. The same water collected one month later in a nearby monitoring well, as confirmed by {sup 18}O, showed a 50% reduction in TOC concentration, and a 7 pmc decrease in {sup 14}C relative to the surface water. This result suggests that older carbon components increase in TOC after recharge.
Date: May 1, 1998
Creator: Davisson, M.L.; Hudson, G.B.; Moran, J.E.; Neimeyer, S. & Herndon, R., LLNL
Partner: UNT Libraries Government Documents Department

Isotopic investigation of recharge to a regional groundwater flow system, Great Basin, NV

Description: Groundwater recharge processes were investigated in central Nevada by examining the relationships between the stable isotope ({delta}D and {delta}{sup 18}O) compositions of snowfall, snowmelt, alpine spring waters, and regional groundwaters. Snowmelt infiltration is inferred to he the dominant source of groundwater recharge in this region. Bulk snow cores collected throughout central Nevada near the time of maximum accumulation have {delta}D and {delta}{sup 18}O pairs that plot subparallel to the global meteoric water line (GMWL), but have negative d-values, implying kinetic isotope enrichments. Heavy isotope enrichments occur at the base of snowpacks due to fractionation during snow metamorphism, sometimes resulting in remarkably systematic isotopic variations. Ice crystals in the soil immediately beneath the snowpack can be strongly depleted in heavy isotopes relative to the overlying snow, implying fractionation or exchange with the snowpack. Late season ablation processes tend to homogenize isotopic variations between snowpack layers, and cause the bulk isotopic composition of the snowpack to become enriched in {sup 18}O by 2-3{per_thousand} relative to the composition during peak accumulation. The dynamic evolution of the snowpack and snowmelt isotopic compositions over time makes it difficult to directly ascertain groundwater recharge compositions without careful mass balance measurements. Preliminary evidence suggests that small local springs may be reasonable indicators of the integrated isotopic value of the snowmelt recharge in a particular area. Springs and snowmelt runoff samples collected throughout central Nevada during the peak runoff plot along a least squares regression line with the equation {delta}D = 7.3{delta}{sup 18}O - 7, which is similar to the line obtained for 28 metamorphosed snow cores collected during peak accumulation ({delta}D = 7.5{delta}{sup 18}O - 3). These results suggest that kinetic fractionation processes during snow metamorphism and ablation may largely account for the low d-values that are widely observed in groundwaters from both local and regional flow ...
Date: May 4, 1999
Creator: Criss, R E; Davisson, M L; Rose, T & Smith, D K
Partner: UNT Libraries Government Documents Department

Tracing and age-dating injected groundwater of the west basin barrier project, Los Angeles, CA

Description: This preliminary report summarizes results from isotopic data recently generated on water collected for the West Basin Municipal Water District (WBMWD). Samples comprised monitoring and production wells up to 3.5 miles form the injection barrier, in addition to barrier product and blend water.
Date: March 26, 1999
Creator: Davisson, M L; Eaton, Gp; Hudson, G B & Koester, C
Partner: UNT Libraries Government Documents Department

Compilation of the Dakota Aquifer Project isotope data and publications: The Isotope Hydrology Program of the Isotope Sciences Division

Description: In FY92 the then Nuclear Chemistry Division embarked on a scientific collaboration with the Kansas Geological Survey (KGS) to characterize with isotope techniques groundwater of the Dakota Formation of Kansas. The Dakota Formation is a Cretaceous-aged marine sandstone hosting potable groundwater in most regions of Kansas whose use will serve to partially offset the severe overdraft problems in the overlying Ogallala Formation. The isotope characterization of the Dakota groundwater has generated data that delineates sources, ages, and subsurface controls on the water quality. Initial interpretations of the data have been published in abstract volumes of (1) the 1993 Geological Society of America National Meeting, (2) the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, and (3) the 1994 Dakota Aquifer Workshop and Clinic. Copies of all abstracts are included in this brief review. One report will focus on the sources and ages of the groundwater, and the other will focus on the subsurface controls on the natural water quality.
Date: January 1, 1995
Creator: Davisson, M.L.; Smith, D.K.; Hudson, G.B.; Niemeyer, S.; Macfarlane, P.A. & Whittemore, D.O.
Partner: UNT Libraries Government Documents Department