11 Matching Results

Search Results

Advanced search parameters have been applied.

RESULTS OF SUPPLEMENTAL MST STUDIES

Description: The current design of the Salt Waste Processing Facility (SWPF) includes an auxiliary facility, the Actinide Finishing Facility, which provides a second contact of monosodium titanate (MST) to remove soluble actinides and strontium from waste if needed. This treatment will occur after cesium removal by Caustic-Side Solvent Extraction (CSSX). Although the process changes and safety basis implications have not yet been analyzed, provisions also exist to recover the MST from this operation and return to the initial actinide removal step in the SWPF for an additional (third) contact with fresh waste. A U.S. Department of Energy (DOE) request identified the need to study the following issues involving this application of MST: Determine the effect of organics from the solvent extraction (CSSX) process on radionuclide sorption by MST; Determine the efficiency of re-using MST for multiple contacts; and Examine fissile loading on MST under conditions using a waste containing significantly elevated concentrations of plutonium, uranium, neptunium, and strontium. This report describes the results of three experimental studies conducted to address these needs: (1) Addition of high concentrations of entrained CSSX solvent had no noticeable effect, over a two week period, on the sorption of the actinides and strontium by MST in a direct comparison experiment. (2) Test results show that MST still retains appreciable capacity after being used once. For instance, reused MST--in the presence of entrained solvent--continued to sorb actinides and strontium. (3) A single batch of MST was used to sequentially contact five volumes of a simulant solution containing elevated concentrations of the radionuclides of interest. After the five contacts, we measured the following solution actinide loadings on the MST: plutonium: 0.884 {+-} 0.00539 wt % or (1.02 {+-} 0.0112) E+04 {micro}g/g MST, uranium: 12.1 {+-} 0.786 wt % or (1.40 {+-} 0.104) E+05 {micro}g/g MST, and neptunium: 0.426 ...
Date: July 24, 2006
Creator: Peters, T; David Hobbs, D & Samuel Fink, S
Partner: UNT Libraries Government Documents Department

BASELINE MEMBRANE SELECTION AND CHARACTERIZATION FOR AN SDE

Description: Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05 and FY06, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small footprint that are crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and have a low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate commercial and experimental membranes for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated poly-etherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity. The use of Nafion{reg_sign} with EW 1100 is recommended for the present SDE testing due to the limited data regarding chemical and mechanical stability of experimental membranes. Development of new composite membranes by incorporating metal particles or by forming ...
Date: April 3, 2007
Creator: Colon-Mercado, H & David Hobbs, D
Partner: UNT Libraries Government Documents Department

RECENT STUDIES OF URANIUM AND PLUTONIUM CHEMISTRY IN ALKALINE RADIOACTIVE WASTE SOLUTIONS

Description: Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions.
Date: June 13, 2006
Creator: King, W; Bill Wilmarth, B; David Hobbs, D & Tommy Edwards, T
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

Description: We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.
Date: May 30, 2008
Creator: Oji, L; Keisha Martin, K & David Hobbs, D
Partner: UNT Libraries Government Documents Department

FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT

Description: Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with ...
Date: August 3, 2006
Creator: Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D & Amy Ekechukwu, A
Partner: UNT Libraries Government Documents Department

THERMAL AND SPECTROSCOPIC ANALYSES OF CAUSTIC SIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 1 MOLARAND 3 MOLAR NITRIC ACID

Description: Thermal and spectroscopic analyses were performed on multiple layers formed from contacting Caustic Side Solvent Extraction (CSSX) solvent with 1 M or 3 M nitric acid. A slow chemical reaction occurs (i.e., over several weeks) between the solvent and 1 M or 3 M nitric acid as evidenced by color changes and the detection of nitro groups in the infrared spectrum of the aged samples. Thermal analysis revealed that decomposition of the resulting mixture does not meet the definition of explosive or deflagrating material.
Date: July 23, 2007
Creator: Fondeur, F; David Hobbs, D & Samuel Fink, S
Partner: UNT Libraries Government Documents Department

THERMAL AND SPECTROSCOPIC ANALYSES OF CAUSTIC LIDE SOLVENT EXTRACTION SOLVENT CONTACTED WITH 16 MOLAR AND 8 MOLAR NITRIC ACID

Description: Thermal and spectroscopic analyses were performed on multiple layers formed from contacting Caustic Side Solvent Extraction (CSSX) solvent with 1 M or 3 M nitric acid. A slow chemical reaction occurs (i.e., over several weeks) between the solvent and 1 M or 3 M nitric acid as evidenced by color changes and the detection of nitro groups in the infrared spectrum of the aged samples. Thermal analysis revealed that decomposition of the resulting mixture does not meet the definition of explosive or deflagrating material.
Date: July 12, 2007
Creator: Fondeur, F; David Hobbs, D & Samuel Fink, S
Partner: UNT Libraries Government Documents Department

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

Description: Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.
Date: May 30, 2008
Creator: Oji, L; Bill Wilmarth, B & David Hobbs, D
Partner: UNT Libraries Government Documents Department

STUDIES OF POTENTIAL INHIBITORS OF SODIUM ALUMINOSILICATE SCALES IN HIGH-LEVEL WASTE EVAPORATION

Description: The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing aluminum and silicates has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS.
Date: February 27, 2008
Creator: Wilmarth, B; Lawrence Oji, L; Terri Fellinger, T; David Hobbs, D & Nilesh Badheka, N
Partner: UNT Libraries Government Documents Department

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

Description: The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a ...
Date: April 15, 2009
Creator: Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J & Mark Elvington, M
Partner: UNT Libraries Government Documents Department

DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING ARP PRODUCT SIMULANT AND SB4 TANK 40 SLUDGE SLURRY

Description: The radioactive startup of two new SRS processing facilities, the Actinide Removal Process (ARP) and the Modular Caustic-Side-Solvent-Extraction Unit (MCU) will add two new waste streams to the Defense Waste Processing Facility (DWPF). The ARP will remove actinides from the 5.6 M salt solution resulting in a sludge-like product that is roughly half monosodium titanate (MST) insoluble solids and half sludge insoluble solids. The ARP product will be added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and dewatered prior to pulling a SRAT receipt sample. The cesium rich MCU stream will be added to the SRAT at boiling after both formic and nitric acid have been added and the SRAT contents concentrated to the appropriate endpoint. A concern was raised by an external hydrogen review panel that the actinide loaded MST could act as a catalyst for hydrogen generation (Mar 15, 2007 report, Recommendation 9). Hydrogen generation, and it's potential to form a flammable mixture in the off-gas, under SRAT and Slurry Mix Evaporator (SME) processing conditions has been a concern since the discovery that noble metals catalyze the decomposition of formic acid. Radiolysis of water also generates hydrogen, but the radiolysis rate is orders of magnitude lower than the noble metal catalyzed generation. As a result of the concern raised by the external hydrogen review panel, hydrogen generation was a prime consideration in this experiment. Testing was designed to determine whether the presence of the irradiated ARP simulant containing MST caused uncontrolled or unexpected hydrogen production during experiments simulating the DWPF Chemical Process Cell (CPC) due to activation of titanium. A Shielded Cells experiment, SC-5, was completed using SB4 sludge from Tank 405 combined with an ARP product produced from simulants by SRNL researchers. The blend of sludge and MST was designed to be prototypic of ...
Date: May 14, 2008
Creator: Lambert, D; John Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M; Damon Click, D et al.
Partner: UNT Libraries Government Documents Department