3 Matching Results

Search Results

Advanced search parameters have been applied.

Removal of Technetium, Carbon Tetrachloride, and Metals from DOE Properties

Description: The objective of this research is to prepare, characterize, and evaluate new materials for the removal of technetium (Tc) compounds, halogenated organics, and other troublesome metals from DOE waste streams and contaminated areas. This work follows the discovery that a nanoscale form of zero-valent iron, dispersed on high surface area supports, reduces metal ions (Cr, Hg, Pb, Cd) and Re (as a surrogate for Tc) to insoluble forms much faster than does unsupported iron. The scientific goals of the project are to better understand the mechanism of the reduction process, to develop supports that are compatible with a variety of mixed waste compositions, and to develop surface modifiers for supported iron that will optimize selectivity for the contaminants of interest. The support composition is of particular interest in the case of Tc separation and stabilization in the Hanford tank wastes. While tests with tank waste simulants have shown that pertechnetate is reduced insoluble TcO2, the support material must be compatible with the vitrification process used in the final waste disposition. The surface modifications are also a focal point for Hanford applications because of the complex and variable makeup of the tank wastes.
Date: June 1, 1999
Creator: Mallouk, Thomas E. & Darab, John G.
Partner: UNT Libraries Government Documents Department

Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report

Description: The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.
Date: July 31, 2001
Creator: Darab, John G.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D. & Vienna, John D.
Partner: UNT Libraries Government Documents Department

Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report

Description: The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.
Date: July 31, 2001
Creator: Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D. et al.
Partner: UNT Libraries Government Documents Department