18 Matching Results

Search Results

Advanced search parameters have been applied.

In-situ borehole seismic monitoring of injected CO2 at the FrioSite

Description: The U.S. Dept. of Energy funded Frio Brine Pilot provided an opportunity to test borehole seismic monitoring techniques in a saline formation in southeast Texas. A relatively small amount of CO{sub 2} was injected (about 1600 tons) into a thin injection interval (about 6 m thick at 1500 m depth). Designed tests included time-lapse vertical seismic profile (VSP) and crosswell surveys which investigated the detectability of CO{sub 2} with surface-to-borehole and borehole-to-borehole measurement.
Date: June 1, 2006
Creator: Daley, Thomas M. & Korneev, Valeri A.
Partner: UNT Libraries Government Documents Department

qSF wavefront triplication in a transversely isotropicmaterial

Description: Triplication of a wavefront, also classically known as birefringence, can and does occur in transversely isotropic (TI) media. With the growing interest in shear waves, and in particular, converted shear waves, it becomes necessary to study this phenomenon, and the bright spots that accompany it. In a plane that includes the medium's rotational symmetry axis, there may exist a range of angles within which the qSV wave, whose polarization lies in that plane, may propagate at three distinct velocities. The region of the qSV wave curve where this can occur always corresponds to the region of the qSV slowness curve where the closed qSV curve about the origin is concave. When the range of angles is small and the three arrivals are close together, the usual situation, the qSV wave within that small range will be significantly brighter than in other directions. When the range of angles is large, the two cusps of the wave surface, on the borders of the region of triplication will both be bright spots.
Date: June 1, 2004
Creator: Schoenberg, Michael & Daley, Thomas M.
Partner: UNT Libraries Government Documents Department

Analytical Modeling of Wave Generation by the Borehole OrbitalVibrator Source

Description: The orbital vibrator source (a fluid-coupled shear wave source) has many unique properties that are useful for cross-well, single-well, and borehole-to-surface imaging of both P- (compressional)and S-(shear) wave velocities of reservoir rocks. To this day, however, no standard models for this source have been established, and the mechanism of wave generation and the characteristics of wave field around the source are not well understood yet. In this article, we develop both two and three-dimensional analytical models of the orbital vibrator source, which allow us to examine the source characteristics such as radiation patterns, frequency-dependence of the wave energy, and guided-wave generation. These models are developed in the frequency-wave number domain using the partial wave expansion of the wavefield within and outside the borehole. The results show that the developed models successfully reproduce many characteristics of orbital vibrator source that have been observed in the field, including formation property-dependent vibrator amplitudes, uniform isotropic shear wave radiation pattern, and small tube-wave generation.
Date: June 28, 2004
Creator: Nakagawa, Seiji & Daley, Thomas M.
Partner: UNT Libraries Government Documents Department

Single well seismic imaging of a gas-filled hydrofracture

Description: A single well seismic survey was conducted at the Lost Hills, Ca oil field in a monitoring well as part of a CO2 injection test. The source was a piezoelectric seismic source and the sensors were a string of hydrophones hanging below the source. The survey was processed using standard CMP reflection seismology techniques. A potential reflection event was observed and interpreted as being caused by a near vertical hydrofracture. The radial distance between the survey well and the hydrofracture is estimated from Kirchoff migration using a velocity model derived from cross well seismic tomography. The hydrofracture location imaged after migration agrees with the location of an existing hydrofracture.
Date: August 19, 2003
Creator: Daley, Thomas M.; Gritto, Roland & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department

Application of high resolution crosswell radar and seismic for mapping flow in the vadose zone

Description: Geophysical imaging in the vadose zone poses unique issues. Groundwater contamination at DOE's Hanford, Washington site needs optimal imaging because extremely high drilling costs make direct characterization quite expensive. We conducted seismic and radar crosswell experiments to help answer basic questions about high resolution geophysical characterization. We acquired time lapse surveys during controlled injections of river water and saline solution. Radar imaging of dielectric changes delineated geological layers and moisture movement with 0.25 m resolution. Seismic velocity measurements delineated lithology at 0.25 m resolution with sensitivity to porosity and density changes in sediments and penetration of over 20 m using two sources of different bandwidths.
Date: May 9, 2002
Creator: Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E. & Daley, Thomas M.
Partner: UNT Libraries Government Documents Department

Continuous active-source seismic monitoring of CO2 injection in abrine aquifer

Description: Continuous crosswell seismic monitoring of a small-scale CO2injection was accomplished with the development of a noveltubing-deployed piezoelectric borehole source. This piezotube source wasdeployed on the CO2 injection tubing, near the top of the saline aquiferreservoir at 1657-m depth, and allowed acquisition of crosswellrecordings at 15-minute intervals during the multiday injection. Thechange in traveltime recorded at various depths in a nearby observationwell allowed hour-by-hour monitoring of the growing CO2 plume via theinduced seismic velocity change. Traveltime changes of 0.2 to 1.0 ms ( upto 8 percent ) were observed, with no change seen at control sensorsplaced above the reservoir. The traveltime measurements indicate that theCO2 plume reached the top of the reservoir sand before reaching theobservation well, where regular fluid sampling was occuring during theinjection, thus providing information about the in situ buoyancy ofCO2.
Date: December 10, 2006
Creator: Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B. & Benson, Sally M.
Partner: UNT Libraries Government Documents Department

Continuous monitoring of crosswell seismic travel time

Description: In two separate shallow field experiments, at two distancescales, we have used continuous monitoring to estimate the effect ofbarometric pressure on crosswell travel time and thereby calibrated thestress sensitivity of the rock volume between the wells. In a 3 mexperiment we found a stress sensitivity of 10-6/Pa while in a 30 mexperiment the sensitivity was 5 x 10-8 /Pa. Results from a deeper (1km), 2 month experiment at the San Andreas fault observation boreholeswill be presented if analysis is completed.
Date: April 14, 2006
Creator: Daley, Thomas M.; Silver, Paul G.; Niu, Fenglin & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department

Borehole Seismic Monitoring of Injected CO2 at the Frio Site

Description: As part of a small scale sequestration test (about 1500 tonsof CO2) in a saline aquifer, time-lapse borehole seismic surveys wereconducted to aid in characterization of subsurface CO2 distribution andmaterial property changes induced by the injected CO2. A VSP surveydemonstrated a large increase (about 75 percent) in seismic reflectivitydue to CO2 injection and allowed estimation of the spatial extent of CO2induced changes. A crosswell survey imaged a large seismic velocitydecrease (up to 500 m/s) within the injection interval and provided ahigh resolution image of this velocity change which maps the subsurfacedistribution of CO2 between two wells. Numerical modeling of the seismicresponse uses the crosswell measurements to show that this small CO2volume causes a large response in the seismic reflectivity. This resultdemonstrates that seismic detection of small CO2 volumes in salineaquifers is feasible and realistic.
Date: April 21, 2006
Creator: Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, JohnE. & Korneev, Valeri A.
Partner: UNT Libraries Government Documents Department

Integrated seismic studies at the Rye Patch Geothermal Reservoir, Nevada

Description: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional ray tracing was performed to simulate wave propagation from the surface sources to the receiver at depth. Travel time differences between observed and calculated times were mapped to topographic changes in the elevation of the interface between the carbonate basement and the sedimentary and volcanic unit above. Results indicate the presence of two dominant geologic features. The first confirms the regional trend of the geologic units in the Basin and Range province with a north-south strike and dip to the west, as expected for normal faulting encountered in an extensional regime. The second is a local disturbance of this regional pattern in form of an elevation of the interface between the carbonate basement and the overlying sedimentary sequence, striking east-west. The geometry of the structure is corroborated by results from a seismic-reflection survey, and by results of tomographic studies conducted as part of the seismic survey. Seismic waves, generated from far-offset shots during the 3-D surface survey, exhibit a sudden decrease in amplitudes while propagating across the boundaries of the elevation high. This apparent boundary correlates spatially with the location of the Rye Patch fault as interpreted from the 3-D seismic reflection data. Finite-difference modeling of elastic wave propagation is performed to estimate the structural parameters of the fault. Questions to ...
Date: May 23, 2002
Creator: Gritto, Roland; Daley, Thomas M. & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department

Time-lapse crosswell seismic and VSP monitoring of injected CO2 ina brine aquifer

Description: Seismic surveys successfully imaged a small scale C02injection (1,600 tons) conducted in a brine aquifer of the Frio Formationnear Houston, Texas. These time-lapse bore-hole seismic surveys,crosswell and vertical seismic profile (VSP), were acquired to monitorthe C02 distribution using two boreholes (the new injection well and apre-existing well used for monitoring) which are 30 m apart at a depth of1500 m. The crosswell survey provided a high-resolution image of the C02distribution between the wells via tomographic imaging of the P-wavevelocity decrease (up to 500 mls). The simultaneously acquired S-wavetomography showed little change in S-wave velocity, as expected for fluidsubstitution. A rock physics model was used to estimate C02 saturationsof 10-20 percent from the P-wave velocity change. The VSP survey resolveda large (-70 percent) change in reflection amplitude for the Friohorizon. This C02 induced reflection amplitude change allowed estimationof the C02 extent beyond the monitor well and on 3 azimuths. The VSPresult is compared with numerical modeling of C02 saturations and isseismically modeled using the velocity change estimated in the crosswellsurvey.
Date: May 30, 2006
Creator: Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L. & Hoversten,G.M.
Partner: UNT Libraries Government Documents Department

Crosswell seismic and electromagnetic monitoring of CO2sequestration

Description: The quantitative estimation of changes in water saturation (S{sub W}) and effective pressure (P), in terms of changes in compressional and shear impedance, is becoming routine in the interpretations of time-lapse surface seismic data. However, when the number of reservoir constituents increases to include in situ gas and injected CO{sub 2}, there are too many parameters to be determined from seismic velocities or impedances alone. In such situations, the incorporation of electromagnetic (EM) images showing the change in electrical conductivity ({sigma}) provides essential independent information. The purpose of this study was to demonstrate a methodology for jointly interpreting crosswell seismic and EM data, in conjunction with detailed constitutive relations between geophysical and reservoir parameters, to quantitatively predict changes in P, S{sub W}, CO{sub 2} gas saturation (S{sub CO2}), CO{sub 2} gas/oil ratio (R{sub CO{sub 2}}), hydrocarbon gas saturation (S{sub g}), and hydrocarbon gas/oil ration (R{sub g}) in a reservoir undergoing CO{sub 2} flood.
Date: July 30, 2002
Creator: Hoversten, G. Michael; Gritto, Roland; Daley, Thomas M.; Majer,Ernest L. & Myer, Larry R.
Partner: UNT Libraries Government Documents Department

Preseismic Velocity Changes Observed from Active Source Monitoringat the Parkfield SAFOD Drill Site

Description: Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. Here we show that such stress changes are measurable by exploiting the stress dependence of seismic wave speed from an active source cross-well experiment conducted at the SAFOD drill site. Over a two-month period we observed an excellent anti-correlation between changes in the time required for an S wave to travel through the rock along a fixed pathway--a few microseconds--and variations in barometric pressure. We also observed two large excursions in the traveltime data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. Interestingly, the two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.
Date: June 10, 2008
Creator: Daley, Thomas; Niu, Fenglin; Silver, Paul G.; Daley, Thomas M.; Cheng, Xin & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department

Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment

Description: A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.
Date: April 29, 2003
Creator: Gritto, Roland; Daley, Thomas M. & Myer, Larry R.
Partner: UNT Libraries Government Documents Department

Joint Cross Well and Single Well Seismic Studies at Lost Hills, California

Description: A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data. The cross well experiment did not detect the presence of the hydrofracture but appeared ...
Date: June 25, 2002
Creator: Gritto, Roland; Daley, Thomas M. & Myer, Larry R.
Partner: UNT Libraries Government Documents Department