3 Matching Results

Search Results

Advanced search parameters have been applied.

NSLS-II Preliminary Design Report

Description: Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and ...
Date: November 1, 2007
Creator: Dierker, S.
Partner: UNT Libraries Government Documents Department

Science and Technology of Future Light Sources

Description: Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the ...
Date: December 1, 2008
Creator: Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J. et al.
Partner: UNT Libraries Government Documents Department


Description: The Green-Chasman lattice, which is the basis for both NSLS storage rings, was conceived with insertion devices in mind. Long, field-free straight sections were provided in the design. The electron optics were chosen so that these sections had zero dispersion and the effects of new magnetic structures placed in these regions would have minimal effect on the emittance of the electron beam. This design concept has been followed by all high-brightness rings which were built subsequent to the NSLS. The X-Ray Ring straight sections also have a very small vertical {beta} function, in addition to the zero dispersion. This was done to optimize the brightness of wiggler sources. There is a further benefit however. The {beta} function determines the beam size and divergence at a particular point in the storage ring lattice. The size is proportional to {radical}{beta} and the divergence is proportional to 1/{radical}{beta}. Thus the electron beam is very small at the center of the X-Ray Ring straight sections. In the initial development of the insertion device program, no specific advantage was taken of this feature. Of the eight straight sections in the X-Ray Ring lattice, five are readily available for magnetic insertion devices and the remaining three are dedicated to radio-frequency drive cavities (2) and injection (1).
Date: June 1, 1998
Partner: UNT Libraries Government Documents Department