11 Matching Results

Search Results

Advanced search parameters have been applied.

AMPLITUDE AND TIME MEASUREMENT ASIC WITH ANALOG DERANDOMIZATION.

Description: We describe a new ASIC for accurate and efficient processing of high-rate pulse signals from highly segmented detectors. In contrast to conventional approaches, this circuit affords a dramatic reduction in data volume through the use of analog techniques (precision peak detectors and time-to-amplitude converters) together with fast arbitration and sequencing logic to concentrate the data before digitization. In operation the circuit functions like a data-driven analog first-in, first-out (FIFO) memory between the preamplifiers and the ADC. Peak amplitudes of pulses arriving at any one of the 32 inputs are sampled, stored, and queued for readout and digitization through a single output port. Hit timing, pulse risetime, and channel address are also available at the output. Prototype chips have been fabricated in 0.35 micron CMOS and tested. First results indicate proper functionality for pulses down to 30 ns peaking time and input rates up to 1.6 MHz/channel. Amplitude accuracy of the peak detect and hold circuit is 0.3% (absolute). TAC accuracy is within 0.3% of full scale. Power consumption is less than 2 mW/channel. Compared with conventional techniques such as track-and-hold and analog memory, this new ASIC will enable efficient pulse height measurement at 20 to 300 times higher rates.
Date: November 10, 2002
Creator: O CONNOR,P.; DE GERONIMO,G. & KANDASAMY,A.
Partner: UNT Libraries Government Documents Department

A High-Speed Detector System for X-ray Fluorescence Microprobes.

Description: We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.
Date: October 29, 2006
Creator: Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J. & O
Partner: UNT Libraries Government Documents Department

FRONT-END ASIC FOR A SILICON COMPTON TELESCOPE.

Description: We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detector process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.
Date: October 27, 2007
Creator: DE GERONIMO,G.; FRIED, J.; FROST, E.; PHLIPS, B.; VERNON, E. & WULF, E.A.
Partner: UNT Libraries Government Documents Department

ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

Description: A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.
Date: July 8, 2002
Creator: DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A. & GROSHOLZ,J.
Partner: UNT Libraries Government Documents Department

NOVEL INTEGRATING SOLID STATE DETECTOR WITH SEGMENTATION FOR SCANNING TRANSMISSION SOFT X-RAY MICROSCOPY.

Description: An integrating solid state detector with segmentation has been developed that addresses the needs in scanning transmission x-ray microscopy below 1 keV photon energy. The detector is not cooled and can be operated without an entrance window which leads to a total photon detection efficiency close to 100%. The chosen segmentation with 8 independent segments is matched to the geometry of the STXM to maximize image mode flexibility. In the bright field configuration for 1 ms integration time and 520 eV x-rays the rms noise is 8 photons per integration.
Date: July 29, 2001
Creator: FESER,M.; JACOBSEN,C.; REHAK,P.; DE GERONIMO,G.; HOLL,P. & STUDER,L.
Partner: UNT Libraries Government Documents Department

READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

Description: We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.
Date: October 27, 2007
Creator: DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P. et al.
Partner: UNT Libraries Government Documents Department

READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

Description: Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.
Date: October 29, 2006
Creator: CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B. et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF A HIGH RATE HIGH RESOLUTION DETECTOR FOR EXAFS EXPERIMENTS.

Description: A new detector for EXAFS experiments is being developed. It is based on a multi-element Si sensor and dedicated readout ASICs. The sensor is composed of 384 pixels, each having 1 mm{sup 2} area, arranged in four quadrants of 12 x 8 elements, and wire-bonded to 32-channel front-end ASICs. Each channel implements low noise preamplification with self-adaptive continuous reset, high order shaper, band-gap referenced baseline stabilizer, one threshold comparator and two DAC adjustable window comparators, each followed by a 24-bit counter. Fabricated in 0.35{micro}m CMOS dissipates about 8mW per channel. First measurements show at room temperature a resolution of 14 rms electrons without the detector and of 40 rms electrons (340eV) with the detector connected and biased. Cooling at -35C a FWHM of 205eV (167eV from electronics) was measured at the Mn-K{alpha} line. A resolution of about 300eV was measured for rates approaching 100kcps/cm{sup 2} per channel, corresponding to an overall rate in excess of 10MHz/cm{sup 2}. A channel-to-channel threshold dispersion after DACs adjustment of 2.5 rms electrons was also measured.
Date: November 2002
Creator: De Geronimo, G.; O'Connor, P.; Beuttenmuller, R. H.; Li, Z.; Kuczewski, A. J. & Siddons, D. P.
Partner: UNT Libraries Government Documents Department

MULTI ELEMENT SI SENSOR WITH READOUT ASIC FOR EXAFS SPECTROSCOPY.

Description: Extended X-ray Absorption Fine Structure (EXAFS) experiments impose stringent requirements on a detection system, due to the need for processing ionizing events at a high rate, typically above of 10Mcps/cm{sup 2}, and with a high resolution, typically better than 300eV. The detection system here presented is being developed targeting these stringent requirements. It is the result of a cooperation between the Instrumentation Division and the National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL). The system is composed of a multi-element Si sensor with dedicated per pixel electronics. The combination of high rate, high resolution and moderate complexity makes this system attractive when compared to other multi-element solutions. In sections 2, 3 and 4 the sensor, the interconnect and the electronics are briefly described. Section 5 reports on the first experimental results.
Date: September 9, 2002
Creator: DE GERONIMO,G.; O CONNOR,P.; BEUTTENMULLER,R.H.; LI,Z.; KUCZEWSKI,A.J. & SIDDONS,D.P.
Partner: UNT Libraries Government Documents Department

FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS.

Description: We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.
Date: October 27, 2007
Creator: DE GERONIMO,G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P. et al.
Partner: UNT Libraries Government Documents Department