46 Matching Results

Search Results

Advanced search parameters have been applied.

Singlet Quenching of Tetraphenylporphyrin and its Metal Derivatives by Iron(III) Coordination Compounds

Description: This article reports on the singlet quenching of 5, 10, 15, 20-tetraphenylporphyrin (H₂TPP) and its magnesium(II) and zinc(II) derivatives (MgTPP and ZnTPP) by a series of iron(III) coordination compounds bearing different ligand systems.
Date: January 6, 1990
Creator: D'Souza, Francis & Krishnan, V.
Partner: UNT College of Arts and Sciences

Synthesis and Application of New Chiral Ligands for Enantioselectivity Tuning in Transition Metal Catalysis

Description: A set of five new C3-symmetric phosphites were synthesized and tested in palladium-catalyzed asymmetric Suzuki coupling. The observed reactivity and selectivity were dependent upon several factors. One of the phosphites was able to achieve some of the highest levels of enantioselectivity in asymmetric Suzuki couplings with specific substrates. Different hypotheses have been made for understanding the ligand effects and reaction selectivities, and those hypotheses were tested via various methods including DOSY NMR experiments, X-ray crystallography, and correlation of catalyst selectivity with Tolman cone angles. Although only modest enantioselectivities were observed in most reactions, the ability to synthesis these phosphites in only three steps on gram scales and to readily tune their properties by simple modification of the binaphthyl 2´-substituents makes them promising candidates for determining structure-selectivity relationships in asymmetric transition metal catalysis, in which phosphites have been previously shown to be successful. A series of novel chiral oxazoline-based carbodicarbene ligands was targeted for synthesis. Unfortunately, the chosen synthetic route could not be completed due to unwanted reactivity of the oxazoline ring. However, a new and efficient route for Pd-catalyzed direct amination of aryl halides with oxazoline amine was developed and optimized during these studies. Chiral binaphthyl based Pd(II) ADC complexes with different substituent groups have been synthesized and tested in asymmetric Suzuki coupling reactions. Although only low enantioselectivities were observed in Suzuki coupling, this represents a new class of chiral metal-ADC catalysts that could be tested in further catalytic.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Kong, Fanji
Partner: UNT Libraries

Application of UV-Vis Spectroscopy to the Monitoring, Characterization and Analysis of Chemical Equilibria of Copper Etching Baths

Description: The continuously increasing demand for innovation in the miniaturization of microelectronics has driven the need for ever more precise fabrication strategies for device packaging, especially for printed circuit boards (PCBs). Subtractive copper etching is a fundamental step in the fabrication process, requiring very precise control of etch rate and etch factor. Changes in the etching chemical equilibrium have significant effects on etching behavior, and CuCl2 / HCl etching baths are typically monitored with several parameters including oxidation-reduction potential, conductivity, and specific gravity. However, the etch rate and etch factor can be difficult to control even under strict engineering controls of those monitoring parameters. The mechanism of acidic cupric chloride etching, regeneration and recovery is complex, and the current monitoring strategies can have difficulty controlling the interlocking chemical equilibria. A complimentary tool, thin-film UV-Vis spectroscopy, can be utilized to improve the current monitoring strategies, as UV-Vis is capable of identifying and predicting etching behavior that the current standard methodologies have difficulty predicting. Furthermore, as a chemically-sensitive probe, UV-Vis can investigate the complex changes to the chemical equilibrium and speciation of the etch bath, and can contribute overall to significant improvements in the control of the copper etching system in order to meet the demands of next-level design strategies.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Lambert, Alexander S
Partner: UNT Libraries

Synthesis and Studies of AzaBODIPY Derived Donor-Acceptor Systems for Light Induced Charge Separation

Description: The efficiency and mechanism of electron- and energy transfer events occurring in both in natural and synthetic donor-acceptor systems depend on their distance, relative orientation, and the nature of the surrounding media. Fundamental knowledge gained from model studies is key in building efficient energy harvesting and optoelectronic devices. Faster charge separation and slower charge recombination in donor-acceptor systems is often sought out. In our continued effort to build donor-acceptor systems using near-IR sensitizers, in the present study, we report ground and excited state charge transfer in newly synthesized, directly linked, tetrads featuring bisdonor (donor = phenothiazine and ferrocene), BF2-chelated azadipyrromethane (azaBODIPY) and C60 entities. The tetrads synthesized using multi-step synthetic procedure revealed strong charge transfer interactions in the ground state involving the donor and azaBODIPY entities. The near-IR emitting azaBODIPY acted as a photosensitizing electron acceptor along with fullerene while the phenothiazine and ferrocene entities acted as electron donors. The triads (bisdonor-azaBODIPY) and tetrads revealed ultrafast photoinduced charge separation leading to D•+-azaBODIPY•–-C60 and D•+-azaBODIPY-C60•– (D = phenothiazine or ferrocene) charge separated states from the femtosecond transient absorption spectral studies in both polar and nonpolar solvent media. The charge separated states populated the triplet excited state of azaBODIPY prior returning to the ground state.
Date: December 2018
Creator: Collini, Melissa A.
Partner: UNT Libraries

Supramolecular Solar Cells

Description: Supramolecular chemistry - chemistry of non-covalent bonds including different type of intermolecular interactions viz., ion-pairing, ion-dipole, dipole-dipole, hydrogen bonding, cation-p and Van der Waals forces. Applications based on supramolecular concepts for developing catalysts, molecular wires, rectifiers, photochemical sensors have been evolved during recent years. Mimicking natural photosynthesis to build energy harvesting devices has become important for generating energy and solar fuels that could be stored for future use. In this dissertation, supramolecular chemistry is being explored for creating light energy harvesting devices. Photosensitization of semiconductor metal oxide nanoparticles, such as titanium dioxide (TiO2) and tin oxide (SnO2,), via host-guest binding approach has been explored. In the first part, self-assembly of different porphyrin macrocyclic compounds on TiO2 layer using axial coordination approach is explored. Supramolecular dye sensitized solar cells built based on this approach exhibited Incident Photon Conversion Efficiency (IPCE) of 36% for a porphyrin-ferrocene dyad. In the second part, surface modification of SnO2 with water soluble porphyrins and phthalocyanine resulted in successful self-assembly of dimers on SnO2 surface. IPCE more than 50% from 400 - 700 nm is achieved for the supramolecular self-assembled heterodimer photocells is achieved. In summary, the axial ligation and ion-pairing method used as supramolecular tools to build photocells, exhibited highest quantum efficiency of light energy conversion with panchromatic spectral coverage. The reported findings could be applied to create interacting molecular systems for next generation of efficient solar energy harvesting devices.
Date: August 2012
Creator: Subbaiyan, Navaneetha Krishnan
Partner: UNT Libraries

Ultrafast Photoinduced Energy and Electron Transfer Studies in Closely Bound Molecular and Nanocarbon Donor-Acceptor Systems

Description: As part of the study, photosynthetic system constructs based on BF2-chelated dipyrromethene (BODIPY), BF2-chelated azadipyrromethene (AzaBODIPY), porphyrin, phthalocyanine, oxasmaragdyrin, polythiophene, fullerene (C60), single-walled carbon nanotube and graphene are investigated. Antenna systems of BODIPY dyads and oligomers having BODIPY as an excitation energy donor connected to different acceptors including BODIPY, azaBODIPY, oxasmaragdyrin and aluminum porphyrin are studied. Different synthetic methodologies are used to afford donor-acceptor systems either directly linked with no spacer or with short spacers of varying length and orientation. The effect of donor orientation, donor optical gap as well as nature of donor-acceptor coupling on the donor-acceptor spectral overlap and hence the rate of excitation energy transfer is investigated. In all these systems, an ultrafast energy transfer followed by electron transfer is observed. In particular, in a directly connected BODIPY-azaBODIPY dyad an unusually ultrafast energy transfer (~ 150−200 f) via Förster mechanism is observed. The observation of energy transfer via Förster instead of Dexter mechanism in such closely coupled donor-acceptor systems shows the balance between spatial and electronic coupling achieved in the donor-acceptor system. Moreover, in donor-acceptor systems involving semiconducting 1D and 2D materials, covalently functionalized single-walled carbon nanotubes via charge stabilizing (TPA)3ZnP and noncovalently hybridized exfoliated graphene via polythiophene chromophores are studied for their charge transportation functions. In both cases, not only an ultrafast charge transfer in the range of (~ 2−5 p) is observed but also the charge-separated states were long lived implying the potential of these functionalized materials as efficient charge transporting substrates with organic chromophores for photovoltaic and optoelectronic applications where ultrafast intercomponent charge transfer is vital. In addition, as a final part of this dissertation, the mechanisms of electron injection and back electron transfer in heterogeneous systems involving supramolecularly anchored high potential chromophores on TiO2 film are studied by femtosecond transient absorption spectroscopy. In ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2018
Creator: Gobeze, Habtom Berhane
Partner: UNT Libraries

Utilizing Rapid Mass Spectrometry Techniques to Profile Illicit Drugs from Start to Finish

Description: The increasingly complex world of illicit chemistry has created a need for rapid, selective means of determining the threat posed by new drugs as they are encountered by law enforcement personnel. To streamline this process, the entirety of the problem, from the production of illicit drugs all the way to the final analysis have been investigated. A series of N-alkylated phenethylamine analogues were synthesized in a shotgun method and subjected to direct-infusion analysis. A range of products were detected without the need for time-consuming purification steps, which was extended to novel pharmacological and receptor-binding assays where mass spectrometry is used as a detector. This direct-infusion technique was also applied to studies of methamphetamine and fentanyl production to preemptively determine improvements to common reaction conditions and explore the origins of common impurities. The ability to utilize these rapid techniques directly from the fume hood has also been critically reviewed to highlight gaps in current research and opportunities for improvement. When combined, these studies seek to provide a means for rapid, simplified analysis of illicit drugs to improve the quality of data and dramatically increase throughput.
Date: August 2018
Creator: McBride, Ethan
Partner: UNT Libraries

High-Energy, Long-Lived Charge Separated States via Molecular Engineering of Triplet State Donor-Acceptor Systems

Description: Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘antenna' system causing an electron transfer into the ‘reaction center,' where an electron transfer processes occur resulting a long-lived charge separated state. Over the last two to three decades, many efforts have been directed by the scientific community designing of multi-modular systems that are capable of capturing most of the useful sunlight and generating charge separated states of prolonged lifetimes with adequate amounts of energy. In this dissertation, we report on the design and synthesis of donor–acceptor conjugates with the goal of modulating the yield and lifetime of their charge separated states and hence, improving the conversion of light energy into chemical potential. In simple donor-acceptor systems, generally, the energy and electron transfer events originate from the singlet excited state of the donor or acceptor and can store the greatest amount of energy but must be fast to out compete intersystem crossing. To address this limitation, we have designed novel donor –acceptor conjugates that use high-energy triplet sensitizers in which electron transfer is initiated from the long lived triplet state of the donor. The triplet photosensitizers used were palladium(II) porphyrin and platinum(II) porphyrin. Heavy metal effect in these porphyrins promoted intersystem crossing and the energies of their excited state was quite high. For the case of palladium (II) porphyrin the energy stored was found to 1.89 eV and that of platinum(II) porphyrin 1.84 eV. In addition to using triplet ...
Date: August 2018
Creator: Obondi, Christopher O
Partner: UNT Libraries

Determination of Asymmetric Dimethylarginine by Using Organic Semiconductor-Based Molecularly Imprinted Polymer Film

Description: This article describes simple, fast and cheap procedure of Asymmetric dimethylarginine (ADMA) determination using a new chemosensor with an artificial recognition unit.
Date: May 17, 2018
Creator: Malyshev, Valerii; Michota-Kamińska, Agnieszka; Shao, Shuai; D'Souza, Francis & Noworyta, K.
Partner: UNT College of Arts and Sciences

Optoelectronically Active Metal-Inorganic Frameworks and Supramolecular Extended Solids

Description: Metal-organic frameworks (MOFs) have been intensely researched over the past 20 years. In this dissertation, metal-inorganic frameworks (MIFs), a new class of porous and nonporous materials using inorganic complexes as linkers, in lieu of traditional organic linkers in MOFs is reported. Besides novel MIF regimes, the previously described fluorous MOF "FMOF-1", is re-categorized herein as "F-MIF1". F-MIF-1 is comprised of [Ag4Tz6]2- (Tz = 3,5-bis-trifluoromethyl-1,2,4-triazolate) inorganic clusters connected by 3-coordinate Ag+ metal centers. Chapter 2 describes isosteric heat of adsorption studies of F-MIF1 for CO2 at near ambient temperatures, suggesting promise for carbon capture and storage. We then successfully exchanged some of these Ag(I) centers with Au(I) to form an isostructural Au/F-MIF1. Other, nonporous MIFs have been synthesized using Ag2Tz2 clusters with bridging diamine linkers 4,4'-bipyridine, pyrazine, and a Pt(II) complex containing two oppositely-situated non-coordinating pyridines. This strategy attained luminescent products better-positioned for photonic devices than porous materials due to greater exciton density. Chapter 3 overviews work using an entirely inorganic luminescent complex, [Pt2(P2O5)4]4- (a.k.a. "PtPOP") to form new carbon-free MIFs. PtPOP is highly luminescent in solution, but as a solid shows poor quantum yield (QY ~0.02) and poor stability under ambient conditions. By complexing PtPOP to various metals, we have shown a dramatic enhancement in its solid-state luminescence (by an order of magnitude) and stability (from day to year scale). One embodiment (MIF-1) demonstrates microporous character. Chapter 4 overviews the design and application of new MIF linkers. Pt complexes based upon (pyridyl)azolates, functionalized with carboxylic acid groups, have been synthesized. These complexes, and their esterized precursors, show strong luminescence on their own. They have been used to generate new luminescent MIFs. Such new MIFs may be useful toward future inorganic (LEDs) or organic (OLEDs) light-emitting diodes, respectively. The electronic communication along their infinite coordination structures is desirable for color tuning ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2018
Creator: Ivy, Joshua F.
Partner: UNT Libraries

Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices

Description: My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Patel, Mumukshu D
Partner: UNT Libraries

Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting

Description: Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding strategies. Various spectroscopic studies have provided ample information in terms of establishment of the formation of donor-acceptor hybrids and their extent of interaction in solution and eventual rate of photoinduced electron and/or energy transfer. Electrochemical studies enabled construction of energy level diagram revealing energetic details of the possible different photochemical events supported by computational studies carried out to establish the HOMO-LUMO levels in the donor acceptor systems. Transient absorption studies confirmed formation of charge separated species in the donor-acceptor systems which have been supported by electron mediation experiments. Based on the photoelectrochemical studies, IPCE of 8% was reported for enriched SWCNT(7,6)-ZnP donor-acceptor systems. In summary, the present investigation on the various nanocarbon sensitized donor-acceptor hybrids substantiates tremendous prospect, that could very well become the next generation of materials in building efficient solar energy harvesting devices andphotocatalyst.
Date: December 2013
Creator: Das, Sushanta Kumar
Partner: UNT Libraries

Studies on High Potential Porphyrin-fullerene Supramolecular Dyads

Description: Photoinduced electron transfer in self-assembled via axial coordination porphyrin-fullerene dyads is investigated. Fullerene functionalized with imidazole and fullerenes functionalized with pyridine are chosen as electron acceptors, while zinc pophyrin derivatives are utilized as electron donors. The electron withdrawing ability of halogen atoms make the porphyrin ring electrophilic, which explained the binding of (F20TPP)Zn with fullerene derivatives having the highest binding constant around 105M-1. Another important observation is that the fullerene imidazole binding to zinc pophyrin had higher stability than fullerene pyridine-porphyrin dyad. Computational DFT B3LYP-21G(*) calculations are used to study the geometric and electronic structures. The HOMO and LUMO was found to be located on the porphyrin and fullerene entities, respectively. Photoinduced electron transfer is investigated by the steady-state absorption and emission, differential pulse voltammetry, and nanosecond and femtosecond transient absorption studies. The measurements provided the same conclusion that the increasing number of the halogen atoms on the porphyrin ring leads to the higher binding of porphyrin-fullerene supramolecular dyads and efficient charge separation and charge recombination processes.
Date: December 2013
Creator: Song, Baiyun
Partner: UNT Libraries

Studies on the Porphyrin and Phthalocyanine Modified on Sno2 Photoelectrochemical Cells

Description: The world is facing a tough challenge regarding fulfilling human energy needs. Scientists are motivated to find alternative ways to the fossil fuel at a lower cost with little or no environmental pollution. Among the available renewable resources, the solar energy is an alternative energy to fossil fuel. Scientists are engaged in mimicking the photosynthesis to create the new energy devices such as dye sensitized solar cells. The fundamental theory and properties of the dye sensitized solar cells is given in the first chapter. In this research, the application of the different methods for surface alteration of SnO2 with water soluble porphyrins and phthalocyanine is studied. Using optical absorbance and steady state fluorescence studies, the formation of porphyrins and phthalocyanine discuss on the SnO2 surface is shown. Moreover, the different results of photoelectrochemical cells are show on chapter 2 to understand the porphyrin and phthalocyanine modified on SnO2 as electron injector. In summary, the application porphyrin and phthalocyanine of dimers as a broad band capturing photosensitized dye is discussed.
Date: December 2013
Creator: Lin, Chunyu
Partner: UNT Libraries

MBE Growth and Characterization of Graphene on Well-Defined Cobalt Oxide Surfaces: Graphene Spintronics without Spin Injection

Description: The direct growth of graphene by scalable methods on magnetic insulators is important for industrial development of graphene-based spintronic devices, and a route towards substrate-induced spin polarization in graphene without spin injection. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction LEED, electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES) demonstrate the growth of Co3O4(111) and CoO(111) to thicknesses greater than 100 Å on Ru(0001) surfaces, by molecular beam epitaxy (MBE). The results obtained show that the formation of the different cobalt oxide phases is O2 partial pressure dependent under same temperature and vacuum conditions and that the films are stoichiometric. Electrical I-V measurement of the Co3O4(111) show characteristic hysteresis indicative of resistive switching and thus suitable for advanced device applications. In addition, the growth of Co0.5Fe0.5O(111) was also achieved by MBE and these films were observed to be OH-stabilized. C MBE yielded azimuthally oriented few layer graphene on the OH-terminated CoO(111), Co0.5Fe0.5O(111) and Co3O4(111). AES confirms the growth of (111)-ordered sp2 C layers. EELS data demonstrate significant graphene-to-oxide charge transfer with Raman spectroscopy showing the formation of a graphene-oxide buffer layer, in excellent agreement with previous theoretical predictions. XPS data show the formation of C-O covalent bonding between the oxide layer and the first monolayer (ML) of C. LEED data reveal that the graphene overlayers on all substrates exhibit C3V. The reduction of graphene symmetry to C3V – correlated with C-O bond formation – enables spin-orbit coupling in graphene. Consequences may include a significant band gap and room temperature spin Hall effect – important for spintronic device applications. The results suggest a general pattern of graphene/graphene oxide growth and symmetry lowering for graphene formation on the (111) surfaces of rocksalt-structured oxides.
Date: August 2017
Creator: Olanipekun, Opeyemi B
Partner: UNT Libraries

Microwave-Assisted Synthesis and Photophysical Properties of Poly-Imine Ambipolar Ligands and Their Rhenium(I) Carbonyl Complexes

Description: The phenomenon luminescence rigidochromism has been reported since the 1970s in tricarbonyldiimine complexes with a general formula [R(CO)3LX] using conventional unipolar diimine ligands such as 2,2;-bipyridine or 1,10-phenanthroline as L, and halogens or simple solvents as X. As a major part of this dissertation, microwave-assisted synthesis, purification, characterization and detailed photoluminescence studies of the complex fac-[ReCl(CO)3L], 1, where L = 4-[4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl]-N,N-diethylbenzenamine are reported. The employment of microwaves in the preparation of 1 decreased the reaction time from 48 to 2 hours compared to the conventional reflux method. Stoichiometry variations allows for selective preparation of either a mononuclear, 1, or binuclear, fac-[Re2Cl2(CO)6], 2, complex. The photophysical properties of 1 were analyzed finding that it possesses significant luminescence rigidochromism. The steady state photoluminescence emission spectra of 1 in solution shift from 550 nm in frozen media to 610 nm when the matrix becomes fluid. Moreover, a very sensitive emission spectral analysis of 0.1 K temperatures steps shows a smooth transition through the glass transition temperature of the solvent host. Furthermore, synthetic modifications to L have attained a family of ambipolar compounds that have tunable photophysical, thermophysical and other material properties that render them promising candidates for potential applications in organic electronics and/or sensors - either as is or for their future complexes with various transition metals and lanthanides.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Salazar Garza, Gustavo Adolfo
Partner: UNT Libraries

High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

Description: This article discusses the achievement of high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected).
Date: November 9, 2016
Creator: Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo & D'Souza, Francis
Partner: UNT College of Arts and Sciences

Elucidation of Photoinduced Energy and Electron Transfer Mechanisms in Multimodular Artificial Photosynthetic Systems

Description: Multimodular designs of electron donor-acceptor systems are the ultimate strategy in fabricating antenna-reaction center mimics for artificial photosynthetic applications. The studied photosystems clearly demonstrated efficient energy transfer from the antenna system to the primary electron donor, and charge stabilization of the radical ion pair achieved with the utilization of secondary electron donors that permits either electron migration or hole transfer. Moreover, the molecular arrangement of the photoactive components also influences the route of energy and electron transfer as observed from the aluminum(III) porphyrin-based photosystems. Furthermore, modulation of the photophysical and electronic properties of these photoactive units were illustrated from the thio-aryl substitution of subphthalocyanines yielding red-shifted Q bands of the said chromophore; hence, regulating the rate of charge separation and recombination in the subphthalocyanine-fullerene conjugates. These multicomponent photosystems has the potential to absorb the entire UV-visible-NIR spectrum of the light energy allowing maximum light-harvesting capability. Furthermore, it permits charge stabilization of the radical ion pair enabling the utilization of the transferred electron/s to be used by water oxidizing and proton reducing catalysts in full-scale artificial photosynthetic apparatuses.
Date: May 2017
Creator: Lim, Gary Lloyd Nogra
Partner: UNT Libraries

Substitution Effects of Phenothiazine and Porphyrin Dyes in Dye-sensitized Solar Cells

Description: The details of dye sensitized solar cells was explained and phenothiazine and porphyrin based dyes were synthesized for use in DSSCs. DSSCs offer a unique and cost effective method of renewable energy. DSSCs are characterized through various tests, with the overall efficiency, η, bearing the greatest importance. Incident photon to current conversion efficiency, or IPCE, is also another important characterization of DSSCs. Effect of positioning of the cyanoacrylic acid anchoring group on ring periphery of phenothiazine dye on the performance of dye sensitized solar cells (DSSCs) is reported. The performances of the cells are found to be prominent for solar cells made out of Type-1 dyes compared to Type-2 dyes. This trend has been rationalized based on spectral, electrochemical, computational and electrochemical impedance spectroscopy results. Free-base and zinc porphyrins bearing a carboxyl anchoring group at the para, meta, or ortho positions of one of the meso-phenyl rings were synthesized for DSSCs. Photoelectrochemical studies were performed after immobilization of porphyrins onto nanocrystalline TiO2. The performance of DSSCs with the porphyrin anchoring at the para or meta position were found to greatly exceed those in the ortho position. Additionally, zinc porphyrin derivatives outperformed the free-base porphyrin analogs, including better dye regeneration efficiency for the zinc porphyrin derivatives and for the meta and para derivatives through electrochemical impedance spectroscopy studies. The overall structure-performance trends observed for the present porphyrin DSSCs have been rationalized based on spectral, electrochemical, electrochemical impedance spectroscopy and transient spectroscopy results.
Date: December 2013
Creator: Hart, Aaron S.
Partner: UNT Libraries

Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties

Description: In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase corrosion resistance and longevity of the coating. These coatings were evaluated for composition and corrosion using many different types of instrumental and electrochemical techniques. The overall corrosion resistance and mechanical properties were improved with the composite films in comparison to the pure metals, which proves to be advantageous for many economic sectors including the oil and gas industry.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Thurber, Casey Ray
Partner: UNT Libraries

Synthesis and Photochemical Studies of Wide-Band Capturing Sensitizers Capable of Light Energy Harvesting

Description: Artificial photosynthesis, for the purpose of converting solar energy into fuel, is one of the most viable and promising alternative approaches to solve the current global energy and environmental issues. Among the challenges faced in artificial photosynthesis is in building photosystems that can effectively and efficiently perform light absorption and charge separation in broad-band capturing donor-acceptor systems. While having a broad-band capturing antenna system that can harness incoming photons is crucial, another equally important task is to successfully couple the antenna system, while maintaining its optical properties, to an energy or electron acceptor which serves as the reaction center for the generation of charged species of useful potential energy. The stored potential energy will be utilized in different applications such as driving electrons in solar cells or in splitting water for the generation of fuel. Hence, the particular endeavor of this thesis is to study and synthesize molecular/supramolecular systems with wide-band capturing capabilities to generate long-lived charge separated states. The sensitizer used in building these systems in the present study is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, for short, BF2 chelated Azaboron dipyrromenthene or AzaBODIPY. A handful of novel donor-acceptor systems based on AzaBODIPY have been successfully designed, synthesized and their photochemistry have been investigated using various techniques. In these systems, Azabodipy has been covalently attached to several donors like porphyrin, bodipy, subphthalocyanine, phenothiazine, ferrocene, bithiophene and effectively coupled to an electron acceptor, C60. These systems have been fully characterized by NMR, Mass, optical absorption and emission, X-ray crystallographic, computational, electrochemical, and photochemical studies. It has been possible to demonstrate occurrence of efficient electron and energy transfer events and long-lived charge separated states upon photoexcitation in these model compounds. By changing the arrangements of the donor and acceptor entities, it has also been possible to show directional, through-space and through-bond electron transfer processes. The present ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Bandi, Venu Gopal
Partner: UNT Libraries

Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Description: Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required. This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due to non-stoichiometry determine the effective increased workfunction of the AZO/transition-metal oxide stacks. Reduced hole injection barriers were engineered by ensuring that the surface ad-layers were sufficiently thin to facilitate Fowler-Nordheim tunneling. Improved band alignments resulted in improved hole injection from the surface modified AZO anodes, as demonstrated by I-V characterization of hole only structures. Energy band alignments are proposed based on the aforementioned spectroscopies. Simple bilayer OLEDs employing the surface modified AZO anodes were fabricated and characterized to compare their performance with standard ITO. Anodes consisting of AZO with MoOx or VOx interfacial layers exhibited 50% and 71% improvement in ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Jha, Jitendra
Partner: UNT Libraries