46 Matching Results

Search Results

Advanced search parameters have been applied.

The History of Metals and Ceramics Division

Description: The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.
Date: January 1, 1999
Creator: Craig, D.F.
Partner: UNT Libraries Government Documents Department

Effect of physico-chemical properties on metabolism of transuranium oxide aerosols inhaled by beagle dogs

Description: The oxides of four transuranium isotopes ($sup 238$Pu, $sup 239$Pu, $sup 241$Am, and $sup 244$Cm), prepared by identical methods of calcining the oxalate at 750$sup 0$C for two hours, had different physico-chemical properties. For all four oxides the density ranges from 9.8 to 11.4 g cm$sup -3$ and initial ultrafilterability (suspended fraction of activity less than 24 A) varied from 0.002 percent for $sup 239$PuO$sub 2$ to 2.24 percent for $sup 238$PuO$sub 2$. Dogs were exposed by nose-only techniques to aerosols generated by nebulizing water suspensions of the oxides. The dogs were sacrificed at intervals from one week to about a year postexposure. The rate of translocation of material from lung to other tissues increased from $sup 239$Pu to $sup 238$Pu to $sup 241$Am to $sup 244$Cm, possibly reflecting the decrease in mean particle size from an MMD of 0.7 $mu$m to $sup 239$PuO$sub 2$ to 0.6 $mu$m for $sup 238$PuO$sub 2$ to 0.4 $mu$m for $sup 241$AmO$sub 2$ to 0.1 $mu$m for $sup 244$CmO/sub x/. Accumulation of the isotopes in the liver and skeleton as a percentage of final body burden was 1 percent $sup 239$Pu and 7 to 23 percent for $sup 238$Pu at about a year postexposure, while at 270 days postexposure, values were 40 percent for $sup 241$Am and 40 to 30 percent for $sup 244$Cm. (auth)
Date: January 1, 1975
Creator: Craig, D.K.; Park, J.F. & Ryan, J.L.
Partner: UNT Libraries Government Documents Department

Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.
Date: November 1, 1999
Creator: Morgan, Craig D.
Partner: UNT Libraries Government Documents Department

Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.
Date: November 1999
Creator: Morgan, Craig D.
Partner: UNT Libraries Government Documents Department

Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

Description: The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 ...
Date: November 17, 2008
Creator: Rabe, Craig D. & Nelson, Douglas D.
Partner: UNT Libraries Government Documents Department

MAJOR PLAYS IN UTAH AND VICINITY

Description: Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional Castle Peak interval, (3) conventional Travis interval, (4) conventional Monument Butte ...
Date: November 1, 2003
Creator: Morgan, Craig D. & Chidsey, Thomas C.
Partner: UNT Libraries Government Documents Department

High current plasma electron emitter

Description: A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications.
Date: July 1, 1995
Creator: Fiksel, G.; Almagri, A.F. & Craig, D.
Partner: UNT Libraries Government Documents Department

Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

Description: The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee`s evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable.
Date: March 24, 1995
Creator: Craig, D.K.; Davis, J.S.; Prowse, J. & Hoffman, P.W.
Partner: UNT Libraries Government Documents Department

Impurities, temperature, and density in a miniature electrostatic plasma and current source

Description: We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.
Date: October 1, 1996
Creator: Den Hartog, D.J.; Craig, D.J.; Fiksel, G. & Sarff, J.S.
Partner: UNT Libraries Government Documents Department

Slow extraction from the Fermilab Main Injector

Description: Slow resonant extraction from the Fermilab Main Injector through the extraction channel was achieved in February, 2000, with a spill length of 0.3 sec. Beam losses were small. Excellent wire chamber profiles were obtained and analyzed. The duty factor was not very good and needs to be improved.
Date: July 20, 2001
Creator: al., Craig D. Moore et
Partner: UNT Libraries Government Documents Department

SNS source term evaluation program

Description: Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Results are reported on aerosol experimental studies, that concern interactions between soils and $sup 238$PuO$sub 2$ aerosols which might be created in a space launch abort environment; marine animal studies, which concern support activities for the SNS underwater experiments; ultrafilterability studies, concerns in vitro solubility tests of $sup 238$PuO$sub 2$ as a function of time, temperature, suspension concentration, and molality of solvent; and mathematical modeling, which concerns support of the SNS safety effort to standardize analytical techniques for system risk analysis, including the modeling or biological data obtained from inhalation exposure of rodents and dogs to $sup 238$PuO$sub 2$ aerosols and comparison of the models to that developed for $sup 239$PuO$sub 2$. (CH)
Date: January 1, 1976
Creator: Craig, D.K.; Cannon, W.C.; Filipy, R.E.; Powers, G.J. & Dionne, P.J.
Partner: UNT Libraries Government Documents Department

Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

Description: Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport.
Date: September 1, 1998
Creator: Craig, D.J.G.
Partner: UNT Libraries Government Documents Department

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

Description: The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, ...
Date: October 5, 2003
Creator: Chidsey, Thomas C.; McClure, Kevin & Morgan, Craig D.
Partner: UNT Libraries Government Documents Department

Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and non-perforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.
Date: November 1, 1999
Creator: Deo, Milind D. & Morgan, Craig D.
Partner: UNT Libraries Government Documents Department

Scientific data analysis on data-parallel platforms.

Description: As scientific computing users migrate to petaflop platforms that promise to generate multi-terabyte datasets, there is a growing need in the community to be able to embed sophisticated analysis algorithms in the computing platforms' storage systems. Data Warehouse Appliances (DWAs) are attractive for this work, due to their ability to store and process massive datasets efficiently. While DWAs have been utilized effectively in data-mining and informatics applications, they remain largely unproven in scientific workloads. In this paper we present our experiences in adapting two mesh analysis algorithms to function on five different DWA architectures: two Netezza database appliances, an XtremeData dbX database, a LexisNexis DAS, and multiple Hadoop MapReduce clusters. The main contribution of this work is insight into the differences between these DWAs from a user's perspective. In addition, we present performance measurements for ten DWA systems to help understand the impact of different architectural trade-offs in these systems.
Date: September 1, 2010
Creator: Ulmer, Craig D.; Bayer, Gregory W.; Choe, Yung Ryn & Roe, Diana C.
Partner: UNT Libraries Government Documents Department

MAJOR OIL PLAYS IN UTAH AND VICINITY

Description: Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern ...
Date: September 1, 2003
Creator: Chidsey, Thomas C.; Morgan, Craig D.; McClure, Kevin & Willis, Grant C.
Partner: UNT Libraries Government Documents Department

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

Description: The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal ...
Date: July 1, 2003
Creator: Eby, David E.; Thomas C. Chidsey, Jr.; McClure, Kevin & Morgan, Craig D.
Partner: UNT Libraries Government Documents Department