7 Matching Results

Search Results

Advanced search parameters have been applied.

Higgs Properties in the Fourth Generation MSSM: Boosted Signals Over the 3G Plan

Description: The generalization of the MSSM to the case of four chiral fermion generations (4GMSSM) can lead to significant changes in the phenomenology of the otherwise familiar Higgs sector. In most of the 3GMSSM parameter space, the lighter CP-even h is {approx} 115-125 GeV and mostly Standard Model-like while H,A,H{sup {+-}} are all relatively heavy. Furthermore, the ratio of Higgs vevs, tan {beta}, is relatively unconstrained. In contrast to this, in the 4GMSSM, heavy fourth generation fermion loops drive the masses of h,H,H{sup {+-}} to large values while the CP-odd boson, A, can remain relatively light and tan {beta} is restricted to the range 1/2 {approx}< tan {beta} {approx}< 2 due to perturbativity requirements on Yukawa couplings. We explore this scenario in some detail, concentrating on the collider signatures of the light CP-odd Higgs at both the Tevatron and LHC. We find that while gg {yields} A may lead to a potential signal in the {tau}{sup +}{tau}{sup -} channel at the LHC, A may first be observed in the {gamma}{gamma} channel due to a highly loop-enhanced cross section that can be more than an order of magnitude greater than that of a SM Higgs for A masses of {approx} 115-120 and tan {beta} < 1. We find that the CP-even states h,H are highly mixed and can have atypical branching fractions. Precision electroweak constraints, particularly for the light A parameter space region, are examined in detail.
Date: August 15, 2011
Creator: Cotta, R.C.; Hewett, J.L.; Ismail, A.; Le, M.-P.; Rizzo, T.G. & /SLAC
Partner: UNT Libraries Government Documents Department

Dark Matter in the MSSM

Description: We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
Date: April 7, 2009
Creator: Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G. & /SLAC
Partner: UNT Libraries Government Documents Department

No Prejudice in Space

Description: We present a summary of recent results obtained from a scan of the 19-dimensional parameter space of the pMSSM and its implications for dark matter searches. We have generated a large set of points in parameter space (which we call 'models') for the 19-parameter CP-conserving pMSSM, where MFV has been assumed. We subjected these models to numerous experimental and theoretical constraints to obtain a set of {approx}68 K models which are consistent with existing data. We attempted to be somewhat conservative in our implementation of these constraints; in particular we only demanded that the relic density of the LSP not be greater than the measured value of {Omega}H{sup 2} for non-baryonic dark matter, rather than assuming that the LSP must account for the entire observed relic density. Examining the properties of the neutralinos in these models, we find that many are relatively pure gauge eigenstates with Higgsinos being the most common, followed by Winos. The relative prevalence of Higgsino and Wino LSPs leads many of our models to have a chargino as nLSP, often with a relatively small mass splitting between this nLSP and the LSP; this has important consequences in both collider and astroparticle phenomenology. We find that, in general, the LSP in our models provides a relatively small ({approx} 4%) contribution to the dark matter, however there is a long tail to this distribution and a substantial number of models for which the LSP makes up all or most of the dark matter. Typically these neutralinos are mostly Binos. Examining the signatures of our models in direct and indirect dark matter detection experiments, we find a wide range of signatures for both cases. In particular, we find a much larger range of WIMP-nucleon cross sections than is found in any particular model of SUSY-breaking. As these cross sections ...
Date: August 26, 2010
Creator: Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G. & /SLAC
Partner: UNT Libraries Government Documents Department

Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

Description: We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of {approx}71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (mLSP < 50 GeV) annihilating into {tau}-pairs and heavier LSPs annihilating into b{bar b}. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.
Date: March 15, 2012
Creator: Cotta, R.C.; /SLAC; Drlica-Wagner, A.; Murgia, S.; /SLAC /KIPAC, Menlo Park; Bloom, E.D. et al.
Partner: UNT Libraries Government Documents Department

pMSSM Dark Matter Searches on Ice

Description: We explore the capability of the IceCube/Deepcore array to discover signal neutrinos resulting from the annihilations of Supersymmetric WIMPS that may be captured in the solar core. In this analysis, we use a previously generated set of {approx} 70k model points in the 19-dimensional parameter space of the pMSSM which satisfy existing experimental and theoretical constraints. Our calculations employ a realistic estimate of the IceCube/DeepCore effective area that has been modeled by the IceCube collaboration. We find that a large fraction of the pMSSM models are shown to have significant signal rates in the anticipated IceCube/DeepCore 1825 day dataset, including some prospects for an early discovery. Many models where the LSP only constitutes a small fraction of the total dark matter relic density are found to have observable rates. We investigate in detail the dependence of the signal neutrino fluxes on the LSP mass, weak eigenstate composition, annihilation products and thermal relic density, as well as on the spin-independent and spin-dependent scattering cross sections. Lastly, We compare the model coverage of IceCube/DeepCore to that obtainable in near-future direct detection experiments and to pMSSM searches at the 7 TeV LHC.
Date: August 12, 2011
Creator: Cotta, R.C.; /SLAC; Howe, K.T.K.; /SLAC /Stanford U., Phys. Dept.; Hewett, J.L.; Rizzo, T.G. et al.
Partner: UNT Libraries Government Documents Department

Cosmic Ray Anomalies from the MSSM?

Description: The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e{sup +} + e{sup -}) ux and from PAMELA itself on the {anti p}p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional minimal Supergravity (mSUGRA) version of Supersymmetry even if boosts as large as 10{sup 3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the Minimal Supersymmetric Standard Model (MSSM) with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the Lightest Supersymmetric Particle (LSP) is mostly pure bino and annihilates almost exclusively into {tau} pairs comes very close to satisfying these requirements. The lightest in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by {approx}1 unit of {chi}{sup 2}/dof in comparison to the best fit without Supersymmetry while employing boosts in the range {approx}100-200. The implications of these models for future experiments are discussed.
Date: August 11, 2011
Creator: Cotta, R.C.; /SLAC; Conley, J.A.; U., /Bonn; Gainer, J.S.; U., /Argonne /Northwestern et al.
Partner: UNT Libraries Government Documents Department