6 Matching Results

Search Results

Advanced search parameters have been applied.

A successful effort to involve stakeholders in a facility siting decision using LIPS with stakeholder involvement

Description: Local public opposition to federal bureaucratic decisions has resulted in public agencies rethinking the role of stakeholders in decision making. Efforts to include stakeholders directly in the decision-making process are on the increase. Unfortunately, many attempts to involve members of the public in decisions involving complex technical issues have failed. A key problem has been defining a meaningful role for the public in the process of arriving at a technical decision. This paper describes a successful effort by Sandia National Laboratories (SNL) in New Mexico to involve stakeholders in an important technical decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), a facility intended to consolidate and store wastes generated from the cleanup of hazardous waste sites. A formal priority setting process known as the Laboratory Integration Prioritization System (LIPS) was adapted to provide an approach for involving the public. Although rarely applied to stakeholder participation, the LIPS process proved surprisingly effective. It produced a consensus over a selected site and enhanced public trust and understanding of Project activities.
Date: December 31, 1995
Creator: Merkhofer, L.; Conway, R. & Anderson, B.
Partner: UNT Libraries Government Documents Department

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility

Description: How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.
Date: May 1, 1996
Creator: Merkhofer, M.W.; Conway, R. & Anderson, R.G.
Partner: UNT Libraries Government Documents Department

A successful effort to involve stakeholders in the selection of a site for a corrective action management unit

Description: As part of the effort to clean up hazardous waste sites, Sandia National Laboratories in New Mexico (SNL/NM) adopted a novel approach to involving stakeholders in a key decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), an area designed to consolidate, store, and treat wastes generated from cleanup activities. The decision-making approach was a variation of a technique known as multiattribute utility analysis (MUA). Although MUA has rarely been undertaken during normal Project activities, it proved to be a surprisingly effective means for involving stakeholders in the decision process, generating consensus over a selected site, and enhancing public trust and understanding of Project activities. Requirements and criteria for selecting CAMU sites are provided by the Environmental Protection Agency`s (EPA`s) CAMU Final Rule (EPA 1993). Recognizing the lack of experience with the Rule and the importance of community understanding and support, the ER Project sought an approach that would allow stakeholders to participate in the site-selection process.
Date: December 1, 1995
Creator: Conway, R.; Merkhofer, M.W. & Oms, E.
Partner: UNT Libraries Government Documents Department

Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

Description: The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-L drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.
Date: December 31, 1994
Creator: Conway, R.; Wade, M.; Tharp, T. & Copland, J.
Partner: UNT Libraries Government Documents Department

Stabilization and solidification of chromium-contaminated soil

Description: Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.
Date: November 1, 1997
Creator: Cherne, C. A.; Thomson, B. M. & Conway, R.
Partner: UNT Libraries Government Documents Department

Waste reduction by separation of contaminated soils during environmental restoration

Description: During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill.
Date: June 1, 1998
Creator: Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P. & Guerin, D.
Partner: UNT Libraries Government Documents Department