11 Matching Results

Search Results

Advanced search parameters have been applied.

An Adaptive Landscape Classification Procedure using Geoinformatics and Artificial Neural Networks

Description: The Adaptive Landscape Classification Procedure (ALCP), which links the advanced geospatial analysis capabilities of Geographic Information Systems (GISs) and Artificial Neural Networks (ANNs) and particularly Self-Organizing Maps (SOMs), is proposed as a method for establishing and reducing complex data relationships. Its adaptive and evolutionary capability is evaluated for situations where varying types of data can be combined to address different prediction and/or management needs such as hydrologic response, water quality, aquatic habitat, groundwater recharge, land use, instrumentation placement, and forecast scenarios. The research presented here documents and presents favorable results of a procedure that aims to be a powerful and flexible spatial data classifier that fuses the strengths of geoinformatics and the intelligence of SOMs to provide data patterns and spatial information for environmental managers and researchers. This research shows how evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight into complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Certainly, environmental management and research within heterogeneous watersheds provide challenges for consistent evaluation and understanding of system functions. For instance, watersheds over a range of scales are likely to exhibit varying levels of diversity in their characteristics of climate, hydrology, physiography, ecology, and anthropogenic influence. Furthermore, it has become evident that understanding and analyzing these diverse systems can be difficult not only because of varying natural characteristics, but also because of the availability, quality, and variability of spatial and temporal data. Developments in geospatial technologies, however, are providing a wide range of relevant data, and in many cases, at a high temporal and spatial resolution. Such data resources can take the form of high-dimensional data arrays, which can difficult to fully use. Establishing relationships among high-dimensional datasets through neurocomputing based patterning methods can help 1) resolve large volumes of data into a meaningful form; ...
Date: August 1, 2008
Creator: Coleman, Andre M.
Partner: UNT Libraries Government Documents Department

GIS Operations at the U.S. Department of Energy’s Hanford Site: A Review of the Current Status and a Proposed Action to Ensure Long-Term Data Sustainability

Description: This paper provides a current state of spatial data collections, use, management, and challenges at the Hanford Site through the use and development of a Spatial Data Infrastructure. Recommendations designed to ensure data quality, usability and sustainability now and into the future are presented.
Date: July 27, 2005
Creator: Coleman, Andre M. & Webber, William D.
Partner: UNT Libraries Government Documents Department

Development of a high-resolution bathymetry dataset for the Columbia River through the Hanford Reach

Description: A bathymetric and topographic data collection and processing effort involving existing and newly collected data has been performed for the Columbia River through the Hanford Reach in central Washington State, extending 60-miles from the tailrace of Priest Rapids Dam (river mile 397) to near the vicinity of the Interstate 182 bridge just upstream of the Yakima River confluence (river mile 337). The contents of this report provide a description of the data collections, data inputs, processing methodology, and final data quality assessment used to develop a comprehensive and continuous merged 1m resolution bathymetric and topographic surface dataset for the Columbia River through the Hanford Reach.
Date: October 8, 2010
Creator: Coleman, Andre M.; Ward, Duane L.; Larson, Kyle B. & Lettrick, Joseph W.
Partner: UNT Libraries Government Documents Department

Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

Description: The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.
Date: November 1, 2011
Creator: Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M. & Ward, Duane L.
Partner: UNT Libraries Government Documents Department

Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

Description: This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.
Date: August 1, 2010
Creator: Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M. & Coleman, Andre M.
Partner: UNT Libraries Government Documents Department

The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates

Description: This Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates is designed to support the Oncor geodatabase for the Columbia Estuary Ecosystem Restoration Program (CEERP). The following data categories are covered: water-surface elevation and temperature, sediment accretion rate, photo points, herbaceous wetland vegetation cover, tree plots and site summaries, fish catch and density, fish size, fish diet, fish prey, and Chinook salmon genetic stock identification. The handbook is intended for use by scientists collecting monitoring and research data for the CEERP. The ultimate goal of Oncor is to provide quality, easily accessible, geospatial data for synthesis and evaluation of the collective performance of CEERP ecosystem restoration actions at a program scale.
Date: December 31, 2013
Creator: Sather, Nichole K.; Borde, Amy B.; Diefenderfer, Heida L.; Serkowski, John A.; Coleman, Andre M. & Johnson, Gary E.
Partner: UNT Libraries Government Documents Department

Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan

Description: The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations
Date: December 1, 2011
Creator: Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E. et al.
Partner: UNT Libraries Government Documents Department

Techniques to Access Databases and Integrate Data for Hydrologic Modeling

Description: This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.
Date: June 17, 2009
Creator: Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

Description: This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop and test ...
Date: October 1, 2011
Creator: Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

Description: This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.
Date: May 1, 2012
Creator: Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R. et al.
Partner: UNT Libraries Government Documents Department

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

Description: This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).
Date: October 26, 2010
Creator: Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M. et al.
Partner: UNT Libraries Government Documents Department